Algorithmic Analysis

We've spent quite a bit of time looking at mathematics that will supposedly help us analyze algorithms. Now, let's talk about some of the basics of algorithm analysis.

Our goal is to make an estimate of how long an algorithm will take to run. Of course, depending on what machine is used and the specifics of the compiler, the same code will even take different amounts of time on different machines. Thus, we could never hope to predict an EXACT running time of just an algorithm, let alone an IMPLENTATION of an algorithm. Usually, we must settle for analyzing how many "basic steps" an algorithm will make to within a constant factor. This is where order notation comes in. Rather than wanting to make the statement, "This algorithm will run in exactly 15n1 + 5n - 5 clock cycles", we will settle for making a more broad but safer claim: "This algorithm will run in O(n2) time." All this says is that however many steps the algorithm takes, it's less than cn2, for some positive constant c.

Now, one key question to ask at this point based on the previous example is, "What is n?"

Whenever discussing algorithms, people often times quickly state some order and move on. But the question above is crucial!!!

For different algorithms, run time is measured against different variables. Traditionally, run time is supposed to be measured as a function of the input SIZE (not the input value).

However, people will occasionally use a variable that does NOT stand for the input SIZE with which to state run times. It's incredibly important when reading the analysis of an algorithm to understand what variable(s) the run-time estimate is based upon.

Once we are forewarned about this important question, we still have the following observation to contend with:

An algorithm won't always take the same number of steps to run on different inputs of the same size, or even the same input on different instances!!! In particular, there are three instances of the running time of an algorithm we are interested in:

1) Best Case

2) Average Case

3) Worst Case

Typically, calculating (1) is of little value. No one really cares if an algorithm happens to work really great for one input but much slower for the majority of inputs. Calculating (3) can often be done by analyzing the steps in an algorithm and putting an upper bound on how many times each step could possibly execute. Though this task is usually easy, there are instances where such a calculation is difficult, because the worst possible input for an algorithm is difficult to determine.

The most difficult of these to calculate is (2). Truly, it's impossible to calculate this unless we know the frequency with which an algorithm receives each possible input. Mostly, in these analyses, we'll assume that all possible inputs to an algorithm are equally likely. Unless there's a good reason to make a different assumption, the analysis of algorithms in this manner seems reasonable.

Algorithm Analysis Example: Insertion Sort

Best case: The numbers are already sorted, and each outer loop iteration only requires one comparison. Best Case Running Time (((n).

Worst case: The numbers are sorted in reverse order. The number of swaps executed in iteration k of the outer loop is k-1. Summing up the total number of swaps executed, we get (n-1)n/2. Worst Case Running Time (((n2).

Average case: This seems complicated because it seems as if we must sum over all possible permutations. We can simplify the matter as follows:

When the kth element is to be inserted into the list, it must rank somewhere from 1 to k amongst the already sorted elements. Considering all possible permutations, each possible position is equally likely. Thus, we are equally likely to perform 0 swaps, 1 swap, 2 swaps, ..., k-1 swaps. The average of all of these is (k-1)/2. Now, we can determine the average case running time by summing (k-1)/2 from k=1 to n. This gives us (n-1)n/4. Thus, the average case running time of insertion sort is ((n2).

So where and why do O and (get used in describing algorithm run times?

Typically, if we say an algorithm runs in O(f(n)) time, f(n) often times refers to the worst case running time. If we claim that an algorithm runs in ((f(n)) time, this usually means that f(n) is the best case running time. The reason that it's rarely stated that an algorithm runs in ((f(n)) time is because many times, the best and worst case running times are not the same asymptotic function. In these cases, you can't claim that an algorithm will ALWAYS have a running time in between cf(n) and c'f(n), where c and c' are two different constants.
Algorithmm analysis example: Primality Checking

Algorithm to check to see if a positive integer n>2 is prime.

for (i = 2; i <= sqrt(n); i ++) {

if (n mod i == 0)

return false;

}

return true;

1) Do analysis based on the input size

Step1:
Let
[image: image1.wmf]k

n

n

k

2

,

log

2

=

=

What is
[image: image2.wmf]n

?

[image: image3.wmf]2

2

k

 # times loop

Step2: Analyze “n mod i == 0”

n = k bits, i = ~k/2 bits

O(k) up to k/2 times nums

[image: image4.wmf]...

101

0

...

1101010

01

...

1101010110

2

/

0

...

1101010

-

bits

k

bits

k

O(
[image: image5.wmf]2

k

)

Step3: Result:
[image: image6.wmf])

2

(

2

2

k

O

k

2) Input is in unary

Result:
[image: image7.wmf])

log

(

2

2

n

n

O

_1124398740.unknown

_1124399376.unknown

_1124399583.unknown

_1124399649.unknown

_1124399527.unknown

_1124399280.unknown

_1124398714.unknown

