Proof Techniques

You should be familiar with both of these from undergraduate classes, but a brief explanation of two important proof techniques will be given here:

(1) Proof by Contradiction

(2) Proof by Induction

Contradiction

When using proof by contradiction, you start by assuming that the conclusion you are trying to reach is false. From that assumption you make logical deductions. Eventually, if one of those deductions is clearly false, then it follows that you made a mistake in your proof. BUT, the only possible place that could have occurred is with the initial assumption. If the assumption is incorrect, then you have proven exactly what you wanted to.

Example:

Prove that there exist irrational numbers x and y such that xy is rational.

We know that ((2) is irrational.

We will assume the opposite of the statement we are trying to prove. Thus, we will assume for all irrational numbers x and y, xy is irrational.

It follows that ((2)((2) is also irrational. Let this value by a.

Now consider computing (a)((2). This computation is raising an irrational number to an irrational power.

(a)((2) = (((2)((2))((2) = ((2)((2)x((2) = ((2)2 = 2.

Thus, we have deduced that 2 is irrational. BUT, this is false!!! So, our proof must be flawed at some step. The only step that wasn't necessarily valid was assuming that all irrationals raised to an irrational power yield an irrational answer. Thus, this assumption is incorrect, proving that values of x and y exists where both are irrational, but xy is rational.

Induction

The basic idea behind proof by induction is as follows:

If you want to prove an open statement s(n) for all non-negative integers n, we can instead prove the following two statements:

(1) s(0)

(2) s(k) ( s(k+1), for all non-negative integers k.

The proof of these two form a cascading effect to prove the statement for all integers:

s(0) ( s(1) ( s(2) ( s(3) ( ...

When we write out induction we actually break it up into three steps:

(1) Base Case (proving s(0))

(2) Inductive Hypothesis (assuming s(k))

(3) Inductive Step (proving s(k+1) under the assumption in step 2.)

These three steps simply reflect that there are usually two steps in proving an if then statement directly:

(1) Assume the if clause.

(2) Prove that the then clause logically follows.

Let's take a look at an example of induction:

Prove that the following equation is true for all positive integers n, using induction on n:
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Base case: n=1 LHS = 
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  RHS = 
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  Thus, the equation holds for n=1.

Inductive hypothesis: Assume for an arbitrary n=k, that 
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Inductive step: Prove for n=k+1 that
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, proving the formula true for all positive integers n.

Order Notation

The following is also accepted notation: 

f(n) ( O(g(n)) as opposed to f(n) = O(g(n))

O(g(n)) = {
f(n) : There exists a N0 and C such that 


0<= f(n) <= Cg(n) for all N > N0 
}

((g(n)) = {f(n) : There exists a N0 and C such that 


0<= Cg(n) <= f(n) for all N > N0 
}

((g(n)) = {
f(n) :  f(n) ( O(g(n)) and f(n) ( ( (g(n))  }

o(g(n)) = {
f(n) :  f(n) ( O(g(n)) and f(n) ( ( (g(n))  }

w(g(n)) = {f(n) :  f(n) ( O(g(n)) and f(n) ( ( (g(n))  }

Examples of true statements:

3n2 + 3n + 7 = O(n2) , ( ( n2 )

16n lg n – 7n = ( ( n lg n), O(n2), ( (n)

Another Example:

For all (n > 2)

3n2 + 3n + 7 <=13n2

Let N0 = 2 and C = 13, then

3n2 + 3n + 7 <= 3n2 + 3n2 + 7n2  = 13n2

Since (n > 1)

Easier Definitions based on limits

lim n((  f(n) / g(n) = O,

f(n) = O(g(n)), 

but f(n) ( ((g(n))

lim n(( f(n) / g(n) = C,

f(n) = ((g(n))

lim n(( f(n) / g(n) = (

f(n) = ((g(n)), but

but f(n) ( O(g(n))

O(f(n) + g(n)) = O(  max(  f(n),   g(n) )

Conditional Asymptotic Notation      
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 For “smooth” function, if you can prove a conditional statement, it will also be true in general.
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The beauty here is of course that we can simply find a conditional asymptotic bound for an algorithm and invoke this theorem so that it applies to the algorithm for all sizes of input.
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