Proof that Greedy Scheduling Algorithm Works

Problem: Given a single room to schedule events, and a set R of requests, where the ith request is (si, fi) with si < fi, with 0 ( si < fi ( m, where m is some specified positive real number, find the subset of events of S that do not conflict with each other with maximal cardinality. In English, this means to find the schedule that schedules the maximum number of events. (Technically, two events i and j conflict if either  sj < fi and si < fj  or if si < fj and sj < fi . 

Proof #1 by induction

We will prove that the schedule S provided by the Greedy algorithm shown in class schedules n events at least as quickly as any other competing schedule S'.

Base case: n=1. Because S schedules the event that finishes first out of all possible events, S must finish scheduling 1 event before or exactly when S' does.

Inductive hypothesis: Assume for an arbitrary value of n=k that S schedules k events at least as quickly as any competing schedule S'. (We can say that S has an ending time of t while any competing schedule S' has an ending time of t', and that the hypothesis is that t ( t'.)

Inductive step: Prove for n=k+1 that S schedules k+1 events at least as quickly as any competing schedule S'.

In order to prove the inductive step, we start with the inductive hypothesis. We know that that t ( t'. Thus, S is allowed to schedule any event with a start time greater than or equal to t, while S' is allowed to schedule any event with a start time greater than or equal to t'. Thus, S is allowed to schedule any event S' is allowed to schedule. Of those allowable events, if S chooses one, it will be the one that finishes first. It would be impossible for S' to pick one from the set that finishes before the one that finishes first in the set. Thus, we have shown for n=k+1, that S schedules k+1 events at least as quickly as S' does.

Proof #2 by contradiction

We will assume to the contrary that there exists a schedule S' that schedules more events than the schedule S given by the greedy algorithm. If this is the case, then there is a time t, 0 < t ( m,  at which S' has completed k events while S has completed less than that. (k is a positive integer.) Let t be the minimum such time. Clearly, t occurs when the kth event in schedule S' finishes. Now, denote the time that the (k-1)th event in S' finishes as t'. Since t is the minimum time at which S' finished more events than S, we know that at time t', S has finished at least as many events as S'. Thus, S has finished (k-1) events or more by time t'. When S chooses it's kth event, it chooses the one that finishes first of the ones available. Clearly, the event chosen by S' is available at this point in time. Thus, S must choose it or another that ends at or before when it ends. BUT, this contradicts the fact that S' has finished more events than S at time t. Thus our assumption, that there was a point in time where S' has finished more events than S is false. Thus, S is optimal.

Proof of Dijkstra's Algorithm

We will use proof by contradiction here as well. We will assume the algorithm does not work. If it does not work, then there is a vertex u, when added to S, that does not have an accurate minimal distance estimate d[u]. Since the source vertex gets added in to S at the beginning and its estimate is accurate, we know that u ( s. Consider the point in time when u gets added to S. Right before this point in time, let S = {v1, v2, ... vk} and u(V-S. We know that for 1 ( i ( k, d[vi] = minDistance(s, vi) at this point in time. BUT, when u gets added to S, we have d[u] > midDistance(s, u). If this is the case, then there must be some path from s to u with a smaller distance than the one determined by Dijkstra's algorithm. This path must contain some vertex not in S. Let the path determined by Dijkstra's travel from s to u through edge (vj, u). By the construction of the algorithm, this is the only edge in the path with a vertex not in S. Now, if there is another shorter path, it must go through at least one more vertex not in S. (If it were another path with all vertices except for u inside of S, Dijkstra's would have picked that instead.) Thus, our shortest path goes from s through some vertex vm , where vm ( V - S, to u, either directly or indirectly. The problem with this is that this path can't be shorter than the one determined by Dijkstra's. Since vm ( V - S, d[vm] ( d[u], based on how Dijkstra's works. Furthermore, since there are no negative edge weights in the graph, the weight of the path from vm to u must be non-negative. Thus, this path that is claimed to be shorter than d[u], can not be. Mathematically, we have:

minDistance(s, u) = d[vm] + minDistance(vm, u)



     ( d[u] + minDistance(vm, u)



     ( d[u],

contradicting the assumption that midDistance(s,u) <  d[u]. Thus, the assumption of the existance of a vertex u is in error, and Dijkstra's does work properly.

