NOTES FOR CHAPTER 5.1 THROUGH 5.6

ALGORITHM DESIGN & ANALYSIS

COT-5405

February 23, 2004

DATA STRUCTURES

5.1 – Arrays, Stacks & Queues

Array (data structure with fixed number of items of the same type

· Time to read or change an array element is constant O(1)

· Operation involving all array elements is O(n)

· Insert/delete of an ordered array element is worst case O(n/2)=O(n)

Stack (one-dimensional array with LIFO property

· Push operation adds to end of array [top of stack] is O(1)

· Pop operation removes from end of array [top of stack] is O(1)

Queue (one-dimensional array with FIFO property

· Enqueue operation adds to the queue is O(1)

· Dequeue operation deletes from the queue is O(1)

In general, initializing an array takes with n elements takes O(n).

Using a virtual array sacrifices space to enable initialization of only the array elements that are being used. The cost is then a simple check to determine if the element your interested in is indeed initialized.

5.2 – Records & Pointers

Record (data structure with fixed number of fields/members

· Members can be different data types

· Can have an array of records or a record of arrays

· If record holds fixed length members, member access is O(1)

· Many languages allow dynamic record creation/deletion and this is one reason records are commonly used in conjunction with pointers

· Because we don’t know the location in advance, we simply pass memory addresses to data locations instead

5.3 – Lists

List (collection of items arranged in some order

· Usually not of fixed length nor bounded in advance

· Text basically refers to a linked-list of node structures

· Implemented as an array of fixed length…

· struct listStructure

{

 Int counter = 0 .. maxLength;

 Data array[0 .. maxLength-1];

};

· Items of listStructure occupy array[0] to array[maxLength-1]

· Can find 1st and last items very rapidly [ideal for a stack]

· Insert/delete still takes time on order of O(n)

· Implemented using pointers…

· struct node

{

 Data value ;

 node* next ;

};

node *listStructure ;

· Locating node k takes O(k) time but then insert/delete is O(1)

5.4 – Graphs

Graph (combination of vertices[nodes] and edges

· Connected graph contains path from any vertex to any other

· Directed graph specifies direction of travel from node to node

· Strongly connected is a connected and directed

· Implemented as adjacency matrix…

· struct adjGraph

{

 Data vertex[numberNodes] ;

 Boolean edge[numberNodes][numberNodes] ;

};

· If there exists an edge from vertex(a) to vertex(b) then edge[a,b] = TRUE

· Determining if edge exists takes O(1)

· Examining all nodes connected to some node-k takes O(numberNodes)

· Implemented as a list of records…

· struct record

{

 Data vertex ;

 listStructure neighbors ;

};

record listGraph[numberNodes] ;

· Maybe possible to examine neighbors of some node-k in less than O(numberNodes)

· However, determining if an edge exists now requires O(sizeof(listSturcture)) rather than O(1) table lookup

5.5 – Trees

Tree (an acyclical, connected, undirected graph or…

 (Undirected graph with exactly one path between any 2 nodes

· Tree with (n) nodes has exactly (n-1) edges

· If you add one edge, the tree now contains a cycle

· If you subtract one edge, the tree is now unconnected

· Rooted tree contains one special ‘root’ node

· Trees use terminology including parent and child
· Leaf node has 0 children

· Excluding root and leaf nodes, all other are internal nodes

· Implementation of general rooted tree…

· struct treeNode

{

 Data value ;

 treeNode *eldestChild, *nextSibling ;

}

· struct binaryTreeNode

{

 Data value ;

 binaryTreeNode *left, *right ;

}

· struct k-aryTreeNode

{

 Data value ;

 k-aryTreeNode *children[k] ;

}

· Binary tree has 0,1,2 children only

· Binary tree is called a binary search tree if for some node-k, all data values in left sub-tree are <=k and all data values in right sub-tree are >=k

· Unbalanced – when many nodes only have one child, the tree becomes long & stringy [worst case becomes a linked list] and the search time approaches O(numberNodes)

· Height, Depth & Level

· Height – number of edges from node to a leaf node

· Depth – number of edges from node to the root node

· Level – height of root node minus depth of node

· Finding some node-k in a balanced binary search tree takes O(log(numberNodes)).

· Insert/delete requires a find first and then takes O(1) to finish.

· Balancing methods include AVL, Red-Black & Splay Trees.

5.6 – Associative Tables

Associative table (similar to an array; the difference being that when accessing, the index need not lie between two specified bounds

· Can use strings to index table entries [non uniform indexes]

· Don’t need to reserve table memory ahead of time

· Cannot guarantee O(1) access times like with array

· Implementation using a list…

· Struct tableNode

{

 Index key;

 Data value;

 tableNode *next;

};

tableNode *tableList;

· Very inefficient way to implement an associative table [as a list]

· In worst case, search entire list to find index is missing

· ---

· Due to above inefficiencies, most associative tables use hashing

· An example is a compiler’s implementation of the symbol table

· Let U={x1,x2,…,xn} be the universe of all possible hash indexes

· Let N={0,1,…,n-1} <<U be the number of expected table entries

· The hash function h(x) translates index xU to entry nN

· Good choice hash function is h(x) = x*mod(N) where N is prime

· For xy, h(x) should be different than h(y)

· When xy but h(x)=h(y), a collision occurs [must be handled]

· Not-so-good methods of collision-handling are linear/quadratic probing [look down table for empty entry and use it]

· A common method of handling collisions is by using chaining [basically linked-lists] to store collision participants

· Load factor is defined as m/N, where m=number of distinct indexes used in the table

· Load factor should be kept between ½ and 1

· If L.F. exceeds one, double the table size and L.F. drops to ½

· When table is doubled, all elements must be rehashed into the new table, this rehashing technique is costly but should only occur very infrequently or not at all if proper N is chosen and some foreknowledge of accesses is known

· Good hash tables provide O(1) access to the entries

· Chaining adds linear search to this access time

· Rehashing requires doubling table size and a new hash function but is amortized across all table accesses to approach O(1) due to it’s infrequency of occurrence

