Prove: SAT is NP-complete.

To prove SAT is NP-complete, we must show that every NP problem instance can be polynomially transformed into a SAT instance.

So, suppose we have a NP problem P, and its instance w = w1...wn.

Since P is NP, there exist a Non-Deterministic Turing Machine PTM, that will take in w and produce correctly accept or reject in polynomial time.

Since PTM exist, we will use PTM in addition to w to construct our SAT instance.

Our SAT instance is defined as follows:

phi = phicell AND phistart AND phimove AND phiaccept
where each of the phi has a function:

phicell: guarantee that each cell is valid. (see below for what “cells” are)

phistart: guarantee start configuration is accurate.

phimove: guarantee each transition is valid.

phiaccept: guarantee there is an accepting configuration.

In essence, since PTM exist, we can run w on PTM, and it will consist of a set of TM configurations, starts from #q0w1w2…wnB…B#, and if PTM(w) is accept, than one of the configuration will contain a qaccept.

We put all configurations in a table L, where each row is a configuration:

	Start configuration

	1 of the possible 2nd configuration

	1 of the possible 3rd configuration, derived from the 2nd configuration on the previous row.

	.

.

.

Since P runs in NP time, there is at max O(nk) rows, where n is the length of input to P, or n = |w|. As a result, there can be at max O(nk) columns, because you can only add 1 symbol to the tape at each step (or each row). For simplicity, we will address the number of rows and columns as nk in the subsequence of the prove.

A cell is simply 1 cell of the above table. In each cell, there is a limited amount of character that can present. The set of cell alphabets C is the following:

C = Q U T U {#}, where Q is the set of states, T is the tape alphabet of PTM (which includes input alphabet), and {#} is the front and end mark of each string configuration.

Each variable in our SAT instance will correspond to a particular character in the table L. Thus X1,1,# will be a variable in our SAT instance, and X1,1,# is true if the character on table row 1 column 1 is # (L[1,1] = #). And X1,1,# is false if L[1,1] is anything other than #.

In general,

Xi,j,s = true if L[i,j] = s;

Xi,j,s = false otherwise.

Eventually, if and only if there exist a valid sequence of configurations of PTM that leads to an accept state, there will be an assignment of truth-values to the variables that represents a valid table contains a qaccept, and at the same time satisfy phi of our SAT instance.

The job of phi is to restrict the variables to only represent valid tables that contain qaccept.

First, we must ensure that there is exactly 1 character at each cell. Because as far as boolean variables are concerned, X1,1,a and X1,1,b can be true at the same time, which is an invalid representation for the table. This is done by phicell.

phicell = AND(1<=i,j<=nk) { phiat_least_one(i,j) AND phino_more_than_one(i,j) }

phiat_least_one(i,j) = OR (s in C) {Xi,j,s}

phino_more_than_one(i,j) = AND (s,t in C, s != t) { !Xi,j,s OR !Xi,j,t }

In the above and subsequent notation, ! will represent negation, thus != is “not equal”, and !Xi,j,s is the negation of Xi,j,s.

To ensure there is exactly 1 character in each cell, we ensure that each cell (i,j) has at least one character and no more than 1 character. At least one character means one of Xi,j,s must be true. No more than one chacater mean when you take any 2 distinct variables Xi,j,s and Xi,j,t, they cannot both be true, or 1 of them is false.

Since the size of C is constant with respect to w, the size of phicell is O(nk X nk) = O(n2k), the table size.

Next, we’ll ensure that the first row of table is in fact the starting configuration. This is done by phistart. It simply makes sure each cell on the first row has the desired character:

phistart = X1,1,# AND X1,2,q0 AND X1,3,w1 AND X1,4,w2...

That is, the first row of table should always be #q0w1..wnB...B#

The size of phistart is O(nk), the size of first row.

Next up, we’ll ensure that there is a qaccept somewhere in the table. This is done by phiaccept:

phiaccept = OR (1<=i,j<=nk) Xi,j,qaccept

That is, in one of the cell (i,j), the character there is qaccept.

The size of phiaccept is O(n2k), the size of table.

Last, we define phimove, which ensures that the configurations between adjacent rows are in fact following valid transitions of PTM.

This is done by looking at all 2 X 3 grids on the table, we call each of the grid a window. Because during a transition, the state can move either left or right, and the character to the right of state may change, thus a window of 3 columns over 2 adjacent rows will suffice for checking the transitions.

For example, suppose we have the following 2 transitions:

(1) f(q1,a) = { (q1,b,R) }

(2) f(q1,b) = { (q2,c,L), (q2,a,R) }

Let’s examine the following windows:

	a
	q1
	b

	q2
	a
	c

This is a valid window, because f(q1,b) can result in (q2,c,L). Thus the state becomes q2 and moved to the left, and b is overwritten by c.

	a
	q1
	b

	q2
	b
	c

This is an invalid window, because ‘a’ in row 1 column 1 of window (W[1,1]) changed to ‘b’ in W[2,2]. A character must be to the right of a state in order to change, since there is only 1 state per row, and in this case we know its q1 in W[1,2], we know that ‘a’ in W[1,1] may not be changed.

	#
	b
	a

	#
	b
	a

This is a valid window, because nothing has changed and no states are involved. It’s the part of the tape that is not modified by the transition.

	a
	a
	q1

	a
	a
	b

This is a valid window. The 2 ‘a’ s on the left are not changed, so there is no violation on the first 2 columns. We can see the state q1, on the first row, but not on second row, it folows that the state moved right, and wrote a ‘b’. There exist a transition that leads to moving right and writing ‘b’: f(q1,a) -> (q1,b,R). Thus the 3rd column also has no violation.

	a
	q1
	b

	a
	q2
	c

This is an invalid window, because the state is not moved. State must move either left or right at each transition.

	a
	b
	a

	a
	b
	q2

This is a valid window. Again, the first 2 columns are unchanged and thus valid. The 3rd column tells us that a state on the first row moved left and becomes q2. There is a valid transition for that, namely f(q1,b) -> (q2,c,L). Thus the last column is also valid for this window.

	b
	b
	b

	c
	b
	b

This is a valid window. The last 2 column is unchanged and thus valid. The first column is changed, meaning some state on the left of ‘b’ reads ‘b’, writes ‘c’ and moved left. There is a valid transition that satisfy the situation, namely f(q1,b) -> (q2​,c,L).

Above are some examples shown for understanding of what is needed for phimove. However, note that the exact algorithm is not needed for the proof. We only need to know we can obtain the set of all valid windows (and we can get it by going through all possible characters for all 6 cells, and check each of them for violation). That is, we only need to know there exist a set of valid windows, but we dont need to know what exactly they are for the proof.

We will use the set of windows to define phimove:

phimove = AND (1<=i,j<=nk)

{

OR(each valid window W)

{Xi,(j-1),W[1,1] AND Xi,j,W[1,2] AND Xi,(j+1),W[1,3]

 AND X(i+1),(j-1),W[2,1] AND X(i+1),j,W[2,2] AND X(i+1),(j+1),W[2,3]}

}

In essence, we map the windows on each 2 X 3 grid, where W[1,2] corresponds to cell (i,j) of the table. And for each 2 X 3 grid, one of the valid windows must apply. This will ensure that transitions from one row to the next are valid.

phimove is not in standard conjunctive normal form. We will need to expand the OR(each valid window W) clauses into conjunctive normal form, this will create 6x conjunctive normal form clauses, where x is the number of valid windows. Nevertheless, x is a constant with respect to w, because the number of valid windows are determined by the tape alphabet T and the transition function. Thus, size of phimove is O(n2k), the number of cells in table.

Finally, we created a SAT instance phi that represents and is equivalent to the computation of PTM on w, where the size of phi is polynomial with respect to w. Thus SAT is NP-complete.

Lecture: Arup Guha 2005-04-20

Notes: Yiu Yu Ho, Raymond 2005-04-24

