March 30

Exam Topics

1. Basic Turing Machine (3.1)

1. Know formal definition

2. Trace through computations

2. Variants of TM (3.2)

1. Multiple TM

2. Non-deterministic TM

3. Many of the models are equivalent to standard Turing Machine

3. Church-Turing Thesis (3.3)

Whatever a TM can do is the maximum of what a computer can do.

* Note: No questions from this section

4. Decidable Language (4.1)

1. Can build a TM that will always half correctly on accept or reject.

* Examples:  ADFA, ANFA, AREX, ACFG, EDFA, etc.

* Note: On exam, language will be defined and we'll have to prove it is/is not decidable using high level descriptions.

2. Symmetric difference:  If you have a solution to one problem and are trying to figure out another, change the input and send it to the one you know.

* Note:  On exam, we can build off things already proved in class/book.

5. Halting Problem (4.2)

1. Diagonalization and Countability

2. Countable:  one to one from set to natural numbers

* Note:  On exam, use diagonalization to prove that something in uncountable.

6. Undecidable Problems (5.1)

1. Reduction:  if A ≤ B and we have a solution for B, then we can solve A

This is useful if we know that A is unsolvable and want to prove that B is unsolvable.

* Note:  Nearly all of the examples that deal with a property of the language a TM accepts are undecidable L={<m>|L(m)…}

7. Mapping Reducability

1. (A ≤m B): w  A iff f(w)  B

* f(w) is a computable function

8. Parsing

* Note:  On exam, be able to draw the trees

8.5 Greibach Normal Form

* Note:  Won't be on exam

9. DFA Minimization

Example Problems

1. Prove that the Intersection of two decidable languages is decidable.

Let the 2 decidable languages be L1 and L2.  So, there exist TM M1 and M2 that decide these languages.

Out goal:  Design a TM that accepts L1  L2

Build M3

M3 (string w) {


Run M1(w)


If this rejects, reject


Else {



Run M2(w)



Return whatever M2 returns


}

}

2. L = {<M1, M2> | There exists a string w such that w  L(M1) and w  L(M2)}

Prove undecidable.

Assume to the contrary that L is decidable.  Then there exists TM M' that decides it.

Goal:  Build a TM M1 to decide ATM.

M1 (TM M, string w) {


Create a TM M'' that either accepts just w or nothing.


M''(w) {



Check if the input is w, if not reject.


}


If w  L(M), then L(M'') = {w}


If w  L(M), then L(M'') = 


Return M'(M, M'')

}

The machine always accepts only w that is passed in.

When you pass M'', it accepts only one string.

Post correspondence problem

Given a set of dominos is there a way to decide which domino to put so that the string produced above and below is the same.

{[b/ca], [a/ab], [ca/a], [abc/c]}

[a/ab] [b/ca] [ca/a] [a/ab] [abc/c]

Assume the opposite, that it's solvable.  Then we will decide ATM.

Computation History

# q0 w1 w2 w3 ... wn # w1 q2 w2 w3 ... wn # ... # w1 w2 ... qaccept ... wn #

if M accepts w, we will form dominoes such that the top and bottom of an ordering of valid dominoes reads out the computation history of M on w for both the top and bottom.

If (q, a) = (r, b, R) [qa/br]

f(q, a) = (r, b, L) [cqa/rcb] for all c  T

Add [a/a] for all a  T

Lays say (q0, a) => (q2, b, R) [#/#]

