Notetakers: Justin Miller and Kenrick Goldson

COT 4210

Discrete Structures II
4 common searches:

1. Breadth-First Top-Down

2. Depth-First Top-Down

3. Breadth-First Bottup-Up

4. Depth-First Bottom-Up

Algorithm: beginning at beginning of queue, explore all nodes of depth 1, then 2, 3, etc.

Example I – Breadth-First Search(Top-Down):
Using the following, we derive a breadth-first top-down search for the expression (b+b).

V = {S, A, T}

∑ = {b, +, (,)}

1. S (A

2. A (T

3. A (A + T

4. T (b

5. T ((A)

 (b)

 /

 b
 (T) --- ((A))

 /
 /

 T --- (A) --- (A + T)

 /

 S --- A
 b + T

 \
 /

A + T --- T + T --- (A) + T

 \

 A + T + T --- T + T + T

\

 A + T + T + T

NOTE: If string bb+ is searched for using Breadth-First Search Top-Down parsing method, it is possible for the search to continue forever since it is not part of the language.

Example II – Depth-First Search(Top-Down):
Using the same example, we search depth-first top-down for the expression (b+b).

 S

 /

 T

/ \

 b (A)

 / \

 (T)
 (A+T)

/ \
 \

 (b) ((A)) (T+T)

/

 (b + T)

 /

 (b + b)

Working backwards (bottom-up), we show that (b + b) is in the grammar S.

(b + b) ((T + b) ((A + b) ((A + T) ((A) (T (A (S

· An issue with this parsing method is that if one of the nodes goes on forever, then you will never get to the rest of the tree

· A stack keeps track of every substitution in case a dead end is reached

· NOTE: DFS is not necessarily any better than BFS

Example III – Breadth-First Search(bottom-up):
Using the same example, we search breadth-first bottom-up for the expression (b+b).

· The goal is to start at the final string and get to the start. If successful, then the string is in the language.

This branch never gets explored ---

 /

 /

 (A) --- T --- A --- S

 /

 /

 (A + b) --- (A + T) --- (A + A) --- (A + S)

 /

 (T + b) --- (T + T) --- (T + A) --- (T + S)

 /

(b+b) --- A

 \

 (b + T) --- (b + A) --- (b + S)

Example IV – Depth-First Search(bottom-up):
Using the same example, we search depth-first bottom-up for the expression (b+b).

(b + b)

 |

(T + b)

 |

(A + b)

 |

(A + T)

 / \

 (A + A) (A)

 /

 |

 stuck here

T

 |

A

 |

S

Direct Left Recursion:
A (Au1 | Au2 | Au3 | v1 | v2 | v3 | v4

A (v1u1 | v1u2 | v1u3 | v2u1 | v2u2 | … | v4u3

Intermediate

A (v1Z | v2Z | v3Z | v4Z | v1 | v2 | v3 | v4

Z (u1Z | u2Z | u3Z | u1 | u2 | u3

A (Aa | Aab | bb | b

A (bb | b | bZ | bbZ

Z (aZ | abZ

