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COT 4210

Discrete Structures II
4 common searches:

1. Breadth-First Top-Down

2. Depth-First Top-Down

3. Breadth-First Bottup-Up

4. Depth-First Bottom-Up

Algorithm: beginning at beginning of queue, explore all nodes of depth 1, then 2, 3, etc.

Example I – Breadth-First Search(Top-Down):
Using the following, we derive a breadth-first top-down search for the expression (b+b).

V = {S, A, T}

∑ = {b, +, (, )}
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NOTE: If string bb+ is searched for using Breadth-First Search Top-Down parsing method, it is possible for the search to continue forever since it is not part of the language.

Example II – Depth-First Search(Top-Down):
Using the same example, we search depth-first top-down for the expression (b+b).
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Working backwards (bottom-up), we show that ( b + b ) is in the grammar S.

( b + b )  (  ( T + b )  (  ( A + b )  (  ( A + T )  (  ( A )  (  T  (  A  (  S

· An issue with this parsing method is that if one of the nodes goes on forever, then you will never get to the rest of the tree

· A stack keeps track of  every substitution in case a dead end is reached

· NOTE: DFS is not necessarily any better than BFS

Example III – Breadth-First Search(bottom-up):
Using the same example, we search breadth-first bottom-up for the expression (b+b).

· The goal is to start at the final string and get to the start. If successful, then the string is in the language.
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Example IV – Depth-First Search(bottom-up):
Using the same example, we search depth-first bottom-up for the expression (b+b).
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Direct Left Recursion:
A ( Au1 | Au2 | Au3 | v1 | v2 | v3 | v4

---------------------------------------------------------------

A ( v1u1 | v1u2 | v1u3 | v2u1 | v2u2 | … | v4u3

Intermediate

A ( v1Z | v2Z | v3Z | v4Z | v1 | v2 | v3 | v4

Z ( u1Z | u2Z | u3Z | u1 | u2 | u3

A ( Aa | Aab | bb | b

A ( bb | b | bZ | bbZ

Z ( aZ | abZ

