Sean Williams

Notes 4.3 through 4.15

Prove Real Numbers a	are uncountable:
----------------------	------------------

Ν	Real Number:
1	. <u>5</u> 000
2	.2 <u>5</u> 00
3	.32 <u>5</u> 0
4	.411 <u>6</u>

 $d_i = n_i (d_i) + 1 \mid ith \ digit \ of \ n_i$

Using this formula we obtain .6667...-> which is not on the list

f: N -> N

	1	2	3	4
F1	<u>3</u>	1	2	10
F2	2	<u>2</u>	2	2
F3	1	2	<u>3</u>	4
g	4	3	4	

g(1) = F1(1) + 1 g(2) = F2(2) + 1g(k) = Fk(k) + 1

P(N) = the subsets of the natural numbers

	1	2	3	4
S1	<u>1</u>	0	1	1
S2	0	<u>1</u>	1	1
S3	1	1	<u>0</u>	0
t	0	0	1	

If $k \subseteq Sk$ then $k \sim C t$ If $k \sim \subseteq of Sk$ then $k \in t$

try out all strings of length i or less for i steps

Turing Recognizable <=> Enumerable Turing Recognizable: TM M recognizes the language

ε, 0, 1 **ε**, 00, 01, 10, 11, 0 1

Whenever a string gets accepted, output it. (keep track of accepted strings and don't run these again)

If we have an enumerator E, we will create a TM M as follows: Given an input string s, run the enumerator, of s ever shows up on the output, accept.

Hilbert's Problem:

Polynomial $6x^3y + 3x^2z - 4xz + 5$ This is unsolvable

Equivalent:

Turing's definition of an algorithm: What can be computed on a Turing machine Church's definition of an algorithm: Using λ calculus

Our intuitive notion of an algorithm <=> Formal notion

Decidable Qs:

Given a graph G, is G connected?

 $L = \{ \langle G \rangle | G \text{ is a connected graph } \}$ Where $\langle G \rangle$ is a string encoding of the graph

 $A_{DFA} = \{ \langle B \rangle | B \text{ is an NFA that accepts } w \}$ Simulate w on B, return the end result

A_{NFA} = { | B is an NFA that accepts w} 1) Algorithm to convert NFA => DFA B' 2) Run w on B'

 $E_{DFA} = \{ \langle B \rangle | L(B) = \emptyset \}$ k states: all strings of length k or less

$$\begin{split} & EQ_{DFA} = \{ <A,B> \mid L(A) = L(B) \} \\ & \text{iff } L(A) = L(B) \\ & \text{then } L(A) = L(B) \\ & \sim L(A) \quad L(B) = \emptyset \\ & \sim L(A) \quad L(B) = \emptyset \\ & \text{and } \sim L(A) \quad L(B) = \emptyset \\ & \text{and } \sim L(A) \quad L(B) = \emptyset \\ & \text{A, create B' to accept } \sim L(B) \end{split}$$