
CFG & CNF Notes Written By: Thomas Meeks

Context-Free Grammar of Regular Languages
DFA -> CFG

S -> 0A | 1S
A -> 0C | 1B | E
B -> 1C | 0A
C -> 0S | 1B | E

q0 = S, q1 = A, q2 = B, q3 = C

Rules of Conversion:
(q0, 0) => q2 to CFG: q2 = q00
(qi, a) => qj to CFG: qj = qia or qi = aqj

if qi is an accept state, also include qi = E

For Example
011010

Trace in DFA:
(q0, 0) -> (q1, 1) -> (q2, 1) -> (q3, 0) -> (q0, 1) -> (q0, 0) -> (q1, E)

Trace in CFG:
S -> 0A -> 01B -> 011C -> 0110S -> 01101S -> 011010A -> 011010

Ambigious Grammars
A grammar in which the same string can be created using two
different parse trees.

Example
E -> E + E | E * E | E | a

a + a * a

Derivation 1: E -> E + E -> E + E * E -> a + a * a
Derivation 2: E -> E * E -> E + E * E -> a + a * a

q
0

q
1

q
3

q
21

010

1

0

1 0

CFG & CNF Notes Written By: Thomas Meeks

1

2

Programming languages must be unambiguous. In an ambigious
language strings that look the same may have different meanings.

This example can be made unambiguous:
E -> E + T | T
T -> T * F | F
F -> (E) | a

If you restrict all derivations to lefmost derivations, it will show that
two different derivations correspond to two different parse trees (or
meanings).

Chomsky Normal Form
All CFGs can be expressed in CNF
Restricts the definition without hindering capability

Restricted Rule Forms
A->BC (B & C are not start variable)
A->a (a is a terminal)
S->E (no other variable may go to epsilon)

Conversion
1. S0 -> S (Prevents S0 from being on the right-hand-side of a rule)
2. A -> E (where A != S0) is not allowed, and must be eliminated.

E

E

*E

aE + E

a a

E

E

+ E

a E * E

a a

CFG & CNF Notes Written By: Thomas Meeks

R -> uAv | uAvAu
R -> uAv | uAvAu | uv | uvu | uvAu | uAvu
(bold portions remove A -> E)

Will add a rule for each time A appears on the RHS of a production

If R -> ... | E, there is a new problem. If R -> E was previously
eliminated, do not add it, but if not, do so and repeat the process to
eliminate until all productions of the form A -> E are gone (where A
!= S0)

3. A -> B: If there is a rule B-> u (where u is a string of terminals and
variables), then A-> u. Then remove all rules of the form A->u
(unless if such a rule was previously removed)

4. A -> U1U2...Uk – convert to:
A -> U1A1

A1 -> U2A2

...
Ak-2 -> Uk-1Uk

Example
A -> aBbB – convert to:
A -> U2A1

A1 -> BA2

A2 -> U1B
U1 -> b
U2 -> a

