

$$q_0 = S$$
, $q_1 = A$, $q_2 = B$, $q_3 = C$

Rules of Conversion:

 $\begin{array}{lll} (q_0,\,0) => q_2 & \quad to & \quad CFG:\,q_2=q_00 \\ (q_i,\,a) => q_j & \quad to & \quad CFG:\,q_j=q_ia \ or \ q_i=aq_j \\ \end{array}$

if q_i is an accept state, also include $q_i = \bar{E}$

For Example

011010

Trace in DFA:

$$(q_0, 0) \rightarrow (q_1, 1) \rightarrow (q_2, 1) \rightarrow (q_3, 0) \rightarrow (q_0, 1) \rightarrow (q_0, 0) \rightarrow (q_1, E)$$

Trace in CFG:

S -> 0A -> 01B -> 011C -> 0110S -> 01101S -> 011010A -> 011010

Ambigious Grammars

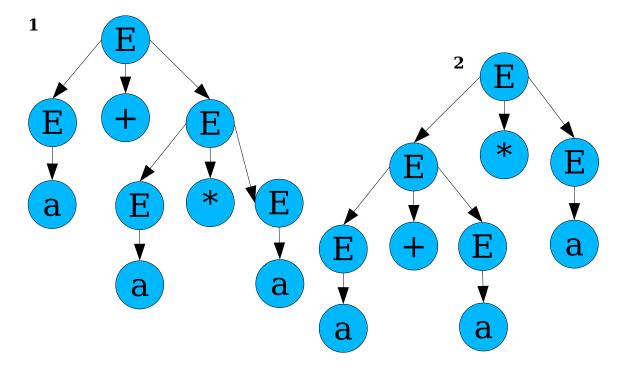
A grammar in which the same string can be created using two different parse trees.

Example

$$E -> E + E | E * E | E | a$$

a + a * a

Derivation 1: $E \rightarrow E + E \rightarrow E + E * E \rightarrow a + a * a$ Derivation 2: $E \rightarrow E * E \rightarrow E + E * E \rightarrow a + a * a$



Programming languages **must** be unambiguous. In an ambigious language strings that look the same may have different meanings.

This example can be made unambiguous:

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T * F \mid F$$

$$F -> (E) | a$$

If you restrict all derivations to lefmost derivations, it will show that two different derivations correspond to two different parse trees (or meanings).

Chomsky Normal Form

All CFGs can be expressed in CNF Restricts the definition without hindering capability

Restricted Rule Forms

A->BC (B & C are not start variable)

A->a (a is a terminal)

S->E (no other variable may go to epsilon)

Conversion

1. $S_0 \rightarrow S$ (Prevents S_0 from being on the right-hand-side of a rule)

2. A -> E (where A $!= S_0$) is **not** allowed, and must be eliminated.

R -> uAv | uAvAu R -> uAv | uAvAu | **uv | uvu | uvAu | uAvu** (bold portions remove A -> E)

Will add a rule for each time A appears on the RHS of a production

- If $R \rightarrow ... \mid E$, there is a new problem. If $R \rightarrow E$ was previously eliminated, do not add it, but if not, do so and repeat the process to eliminate until all productions of the form $A \rightarrow E$ are gone (where $A \mid = S0$)
- 3. A -> B: If there is a rule B-> u (where u is a string of terminals and variables), then A-> u. Then remove all rules of the form A->u (unless if such a rule was previously removed)
- 4. A -> U1U2...Uk convert to:

 $A \rightarrow U_1A_1$

 $A_1 -> U_2 A_2$

• • •

 $A_{k-2} -> U_{k-1}U_k$

Example

A -> aBbB - convert to:

 $A -> U_2A_1$

 $A_1 \rightarrow BA_2$

 $A_2 -> U_1 B$

 $U_1 -> b$

 $U_2 -> a$