

COT 3100 Program #3 Spring 2014

Assigned: 2/24/2014

Check WebCourses for due date

Note: This program (and all programs for the course) are ONLY for students

who signed up for the programming option. If you signed up for this option,

you MUST DO ALL FIVE programs assigned.

General Program Directions (to be followed for all five programs)
Turn in a single source file, either C or Java, with the name designated in the note at the bottom

that solves the problem described below. Please read all of your input from standard in and

output to standard out. To test your program with input files, please pipe the input file into your

program and pipe the output to another file. If you don't know how to do this, please see a TA to

describe this process to you.

The Problem: Calculating the Euler Phi Function
One of the key calculations in RSA encryption is the Euler Phi function, φ. In short, φ(n) is equal

to the number of values from the set {1, 2, 3, ..., n} that are relatively prime with n. Two integers

are relatively prime if their greatest common divisor is 1. Euler proved that for each positive

integer a such that gcd(a, n) = 1, . It is this very fact that RSA encryption

exploits. It turns out that if we have the prime factorization of an integer n, it's fairly easy to

compute φ(n).

In particular, given that ∏

 , we can calculate ∏

 .

For example, if n = (2
4
)(3)(17

3
), then φ(n) = (2

4
 - 2

3
)(3 - 1)(17

3
 - 17

2
).

For this problem, you will be asked to calculate φ(n) for values up to n = 10
12

.

Problem Solving Outline

My aim here is for you to solve this problem in a specific way. The outline of the solution

follows below. Please follow this outline. If you are curious as to why it's efficient, please come

and ask me individually.

1. Precompute a list of all primes less than or equal to 10
6
, using the Sieve or Eratosthenes. In

particular, first use a boolean array and mark which items in it are prime. After finishing the

sieve, go back through the array and count how many of the values in the range are prime. Then,

create a new array of integers of exactly this size. Store each prime number in this new array. As

an example, if we were only calculating primes up to 10, then the first part would use a boolean

array of size 11, which would end up storing true in indexes 2, 3 5 and 7. The second part would

copy these four values, 2, 3, 5 and 7 into a new array of size 4, so that primes[0] = 2, primes[1] =

3, primes[2] = 5 and primes[3] = 7.

2. For each case, do the following:

 a. Read in the input.

 b. Prime factorize the input value, n, as follows:

 i. Run through prime list, in order, trying to divide into n.

 ii. For each prime, p that divides evenly, reset n = n/p. Note this

 prime/power pair and continue.

 iii. Otherwise, go to the next prime.

 c. If the leftover number is greater than 1, its prime, add it to the factorization.

 d. Use the prime factorization of n and the formula for φ(n) to determine the answer.

Input Format

The first line of the input will contain a single positive integer, c (c ≤ 10000), representing the

number of input cases. The following c lines will each contain a single positive integer, n (2 ≤ n

≤ 10
12

) for which you are to calculate φ(n).

Output Format

For each input case, output φ(n) on a line by itself.

Sample Input
5

2

1000000000000

420107

2147483648

69984

Sample Output
1

400000000000

403200

1073741824

23328

Deliverables
A single source file, named either phi.c or phi.java that solves the program stated above, using

the input and output formats stated above, using standard input and standard output. The file

should be submitted via WebCourses by the due date and time stated in WebCourses.

