COT 3100 Program #1 Spring 2017
Assigned: 3/28/2017
Check WebCourses for due date

Note: This program is purely optional. 5% of the course grade is determined
from either attendance in recitation OR two programs. The maximum of the
two options will be what each student receives for their grade.

General Program Directions (to be followed for both programs)

Turn in a single source file, in Python, C or Java, with the name designated in the note at the
bottom of this page that solves the problem described below. Please read all of your input from
standard in and output to standard out. To test your program with input files, please pipe the
input file into your program and pipe the output to another file. If you don't know how to do this,
please see a TA to describe this process to you.

General Grading Criteria
Your submissions for all programs will be graded based on points in these two categories:

1) Execution Points
2) Coding Style Points

The first criteria will 80% of the program grade. It will simply be based on the number of test
cases your program produces correct output on within the designated time limit. (No test cases
after a crash will be run to see if your program would have passed them.)

The second criteria will typically be 20% of the program grade. It will look very similar to my
Computer Science | style criteria. Use good variable names, indent properly, use reasonable
white space, comment appropriately, as well as good coding style (use of methods/functions
when appropriate, reasonable problem breakdown and so forth.)

Deliverables

A single source file, named tromino.py, tromino.c, tromino.java that solves the program stated
on the following page, using the input and output formats stated on the following page, using
standard input and standard output. The file should be submitted via WebCourses by the due date
and time stated in WebCourses.



The Problem: Tromino Tiling

Write a program that tiles a 2" x 2" grid with one missing unit square with L shaped tiles (as
shown in the induction problem in lecture.) Notice that the tiling can be done in many different
ways for most input cases, but to make grading easier, restrictions will be given that “force™ one
correct tiling. Please carefully follow these directions that follow:

You will be asked to tile squares of a size no bigger than 64 x 64. Each L shaped tile will be
designated with a capital letter, so there are only 26 possible tiles that can be printed. Thus for
any case larger than 8 x 8, the same tile will be printed multiple times. The first tile placed will
be 'A’, the second 'B', etc. after tiling with 'Z', go back to tiling with 'A'.

Please write your solution recursively, as indicated by the inductive proof in class.

Here is the order in which you will always tile your cases within your recursive code:

1) First place the "center" tile. Recall that you decide where to place it based on the quadrant that
contains the empty hole. The center tile goes in the center squares of the OTHER THREE
quadrants.

2) Make 4 recursive calls, first to the top left, then top right, then bottom left, finishing with the
recursive call to the bottom right. You must make these recursive calls in this order to replicate
the correct result.

In terms of implementation, use a "global" variable that keeps track of the current letter for the
tile. Immediately after setting a tile, update this global variable so that the change is reflected for
future recursive calls.

Input Format
The first line of the input file will contain a single positive integer, n, representing the number of

input cases to process. The input cases follow, one per line. Each input case will contain three
space separated integers: n (L <n<6), r(1<r<2"),andc (1<c<2"), representing that the grid
to be filled is of size 2" x 2" with a hole at row r, column c, where the top left square is row 1,
column 1.

Output Format
For each input case, provide the desired tiling, leaving a space character in the location of the
hole in the grid. Print no extra characters. Follow the output of each grid with a blank line.

Sample Input Sample Output
2 AA
1 21 A
2 3 2
BBCC
BAAC
D AE

DDEE



