
Logarithms 

 

In short, the logarithm function is the inverse of the exponential function. We learn in grade school 

that multiplication is repeated addition and exponentiation is repeated multiplication. (So, there 

are two levels of abstraction here from the intuitive idea of addition.) Thus, something like 

 

bn = b x b x b … x b (listing b exactly n times) 

 

literally means, "multiply b by itself n times." So, "solving" this problem would be like asking, 

"What number do you get when you multiply b by itself n times?" 

 

Now, let's say we knew the answer to the exponentiation problem was a, giving us the statement: 

 

bn = a 

 

Someone could turn the question around and ask, "How many times must I multiply b by itself to 

obtain a?" If I were given the equation above, by definition, the answer to that question is n. This 

is precisely how we define the logarithm. Given the exponent statement above, we define 

 

log b a = n 

 

Thus, if you are given any logarithm statement such as the one above, by definition, we know that 

bn = a. Similarly, if we are given this exponent statement, by definition of the logarithm, we know 

that log b a = n. 

 

Let's derive some log rules, assuming that we already have knowledge of some exponent rules: 

 

Log Addition 

Let cx = A and cy = B. By definition of logarithm, these two statements are equivalent to saying 

 

x = log c A and y = log c B. 

 

Now, consider the product AB: 

 

AB = (cx)(cy) = cx+y 

 

Now, convert this exponent statement, AB = cx+y to a corresponding log statement: 

 

log c AB = x + y 

 

Now, just substitute by definition for x and y: 

 

 log c AB = log c A + log c B 

 

So, the sum of two logs (using the same base), is a single log with the same base that is the product 

of the two values. This looks weird until you plug some numbers into it: 



Consider c = 2, A = 23 and B = 24 

 

log 2 (2
3)(24) means how many times do I have to multiply two, to obtain the product of multiplying 

2 three times and then multiplying 2 four times. Just by definition, it seems pretty obvious that the 

answer is 3 + 4, because the total times we multiplied 2 is 7, the sum of the number of times we 

multiplied it in both values. Now, we can express 3, by definition as log 2 2
3 and we can represent 

4, by definition as log 2 2
4. 

 

Log Power Rule 

Consider an expression of the form log b A
n. To more fully appreciate an expression of this form, 

let’s first plug in n = 2: 

 

log b A
2 = log b AA = log b A + log b A = 2log b A. 

 

So, now we know that log b A
2 = 2log b A. 

 

Now, let's plug in n = 3: 

 

log b A
3 = log b A

2A = 2log b A + log b A = 3log b A. 

 

Hopefully, you get the picture by now. When we raise A to the power n, we are saying, "multiply 

A by itself n times." But if log b A represents how many times we have to multiply b by itself to 

obtain A, then multiplying this by n will represent how many times we have to multiply b by itself 

to get n copies of A. Hopefully this illustration with b = 2, A = 23 and n = 4 will make it clear: 

 

log 2 (2
3)4 = log 2 (2

3232323) = log 2 2
3 + log 2 2

32323 = log 2 2
3 + log 2 2

3  + log 2 2
323 = 

 

log 2 2
3 + log 2 2

3  + log 2 2
3 + log 2 2

3   = 4 log 2 2
3 

 

Thus, in general, the rule is log b A
n = nlog b A. 

 

Subtraction Rule 

We can do roughly the same proof as the addition proof (but we divide instead of multiply) to 

obtain this log rule: 

 

log c A - log c B = log c 
𝐴

𝐵
. 

 

Log Change Base Rule 

This is perhaps the most important log rule. If we have logs of two different bases, none of the 

previous rules apply. Thus, it becomes necessary to be able to change the base of a logarithm so 

that we can transform a calculation into an equivalent form where all of the logs are the same base. 

Here is the rule: 

 

𝑙𝑜𝑔𝑐𝐴 =
𝑙𝑜𝑔𝑏𝐴

𝑙𝑜𝑔𝑏𝑐
 



Let's prove this one. Let x = log c A and let y = log b c and let z = log b A. The three equivalent 

exponent equations are: 

 

A = cx, c = by and bz = A 

 

Equate the two expressions for A in the first and last equations: 

 

cx = bz 

 

but we have that c = by, so just substitute that in for c: 

 

(by)x = bz 

 

byx = bz 

 

It follows that yx = z. Solve for x to obtain: 

 

𝑥 =
𝑧

𝑦
  

 

Substitute in for x, y and z and we have: 

 

𝑙𝑜𝑔𝑐𝐴 =
𝑙𝑜𝑔𝑏𝐴

𝑙𝑜𝑔𝑏𝑐
  

 

Here is a quick example on changing a base from 4 to 2: 

 

log 4 x = 
𝑙𝑜𝑔2𝑥

𝑙𝑜𝑔24
=

𝑙𝑜𝑔2𝑥

2
 

 

We will see this rule used often in problems where the given logs are in different bases. 

 

f-1(f(x)) = x, as applied to logs 

Most students easily see the following 

 

𝑙𝑜𝑔𝑏𝑏
𝑥 = 𝑥 

 

This is like saying, "What power do I have to raise b to, in order to obtain bx?" It's a self-referential 

question! The answer is in the question, it's x. Most students don't have trouble with this not 

because they see this as self-referential, but because of the power rule and knowing that logbb = 1. 

 

Now, let's flip the order of applying the functions to get: 

 

𝑏𝑙𝑜𝑔𝑏𝑥 = 𝑥 
 

This says, "What answer do I get when I raise b to the power such that if I were to raise b to that 

power, I would get x?" Again, though that's wordy, the answer is in the question: x. 



But, because the power rule doesn't seem to be in there, students have trouble applying this rule. 

If you see both this rule and the previous one as being self-referential, because both involve 

applying a function and then its inverse, then you should be able to understand and apply both 

rules easily. In some sense, "The b's cancel!" But…beware of getting too giddy canceling b's. make 

sure that what you are plugging into makes sense with the definitions provided. 

 

One Other Trick 

Here is one other rule that is pretty interesting and allows us to "exchange" the base of an 

exponential statement: 

 

𝑎𝑙𝑜𝑔𝑏𝑐 = 𝑐𝑙𝑜𝑔𝑏𝑎 
 

Here is the proof. Let's just start with the left hand side and call this quantity x: 

 

𝑥 = 𝑎𝑙𝑜𝑔𝑏𝑐 
 

Now, rewrite this as a log statement with base a, as it's currently an exponent statement with base 

a: 

 

𝑙𝑜𝑔𝑎𝑥 = 𝑙𝑜𝑔𝑏𝑐 
 

Now, let's use a common base. Since which common base we use doesn't matter, I'll use the base 

of the natural logarithm, e. This base is very common in mathematics so the expression 𝑙𝑜𝑔𝑒𝑥 has 

the shorthand 𝑙𝑛𝑥. I'll use this shorthand to save some writing. We will change the base of both 

logs to e: 

 
𝑙𝑛𝑥

𝑙𝑛𝑎
=
𝑙𝑛𝑐

𝑙𝑛𝑏
 

 

Swap the terms for ln a and ln c in this equality to get: 

 
𝑙𝑛𝑥

𝑙𝑛𝑐
=
𝑙𝑛𝑎

𝑙𝑛𝑏
 

 

Then, use the common base rule backwards to get back to logs with different bases: 

 

𝑙𝑜𝑔𝑐𝑥 = 𝑙𝑜𝑔𝑏𝑎 
 

Finally, rewrite this statement as an equivalent exponential statement using c as the base to get: 

 

𝑐𝑙𝑜𝑔𝑏𝑎 = 𝑥 
 

Of course, we had started with 𝑥 = 𝑎𝑙𝑜𝑔𝑏𝑐. It follows that 𝑎𝑙𝑜𝑔𝑏𝑐 = 𝑐𝑙𝑜𝑔𝑏𝑎, as desired. 

 

 

 



Incorrect Steps Students OftenTake 

One of the biggest issues with logs is that students often make incorrect steps. I suspect they do 

this because (a) they've forgotten the exact valid formulas and the incorrect steps look pretty close 

to the correct ones, (b) they do NOT expand out the meaning of a log or exponent to verify if their 

step makes mathematical sense. 

 

Here are three common steps that students take that are not correct: 

 

𝑙𝑜𝑔𝑐(𝐴 + 𝐵) ≠ 𝑙𝑜𝑔𝑐𝐴 + 𝑙𝑜𝑔𝑐𝐵 
 

𝑙𝑜𝑔𝑐(
𝐴

𝐵
) ≠

𝑙𝑜𝑔𝑐𝐴

𝑙𝑜𝑔𝑐𝐵
 

 

[𝑙𝑜𝑔𝑐𝐴]
𝑛 ≠ 𝑛𝑙𝑜𝑔𝑐𝐴 

Notice that one of the two sides of each of these questions IS equal to one of the sides of one of 

the correct rules,  BUT, the other side is NOT equal. To debunk each of these, let's plug in some 

numbers and the conceptually explain why the two sides aren't usually equal: 

 

Try c = 2, A = 4 and B = 4 for the first rule. 

 

LHS = 𝑙𝑜𝑔2(4 + 4) = 𝑙𝑜𝑔28 = 3, since 23 = 8 

 

RHS = 𝑙𝑜𝑔24 + 𝑙𝑜𝑔24 = 2 + 2 = 4, since 22 = 4. 

 

The main problem here is that when I add two values that has nothing to do with how many times 

I need to multiply the base to get that sum. Notice that if I were to have plugged in A = 8 and B = 

2, then the sum 10, isn't a perfect power of 2, even though both 8 and 2 are. So, the left hand side 

would be some irrational value in between 3 and 4, while the right hand side would be an integer 

since both components are integers. 

 

Try the same set of values for the second equation: 

 

LHS = 𝑙𝑜𝑔2 (
4

4
) = 𝑙𝑜𝑔21 = 0, since 20 = 1. 

 

RHS = 
𝑙𝑜𝑔24

𝑙𝑜𝑔24
=

2

2
= 1 

 

The inequivalence becomes even more obvious if we start plugging in larger numbers for B, say 

A = 4 and B = 16. In this scenario, the LHS becomes negative but the RHS can't be negative since 

both components are positive. In general, there is no good rule if I am dividing two logs. The LHS 

side here corresponds properly to the subtraction rule. 

 

Finally, when I raise a log to a power, that means multiplying the log by itself over and over again, 

it has NOTHING to do with multiplying A by itself over and over again. As a simple example, try 

c = A =  2 and n = 1000. 

 



LHS = [𝑙𝑜𝑔22]
1000 = 11000 = 1 

 

RHS = 1000𝑙𝑜𝑔22 = 1000(1) = 1000 

 

So in this example, the RHS is much bigger than the LHS, but I can easily get the opposite behavior 

by plugging in c = 2, A = 4 and n = 1000: 

 
LHS = [𝑙𝑜𝑔24]

1000 = 21000 

 

RHS = 1000𝑙𝑜𝑔24 = 1000(2) = 2000 

 

21000 has 309 digits while 2000 only has 4 digits!!! 

 

 

 

Historical Sidenote 

Just these rules, greatly advanced astronomy in the 17th century. Without calculators, 

multiplication by hand was extremely tedious. With the advent of logs, multiplication became 

easier. Say I wanted to multiply the two following numbers 

 

(2.345 x 105) x (3.152 x 103) 

 

using log rules what we do is take the log of this whole expression (I'll use base 10): 

log 10 (2.345 x 105) x (3.152 x 103) = log 10 2.345 + log 10 105 + log 10 3.152 + log 10 103  

 

                                                         = log 10 2.345 + 5 + log 10 3.152 + 3, via log definition 

 

                                                        = 8 +  log 10 2.345 + log 10 3.152 

 

Now, when we get to this part, it turns out that several people, including the Scottish man John 

Napier, spent many years of their lives creating logarithm tables. These tables had entries for the 

logs of many values within some specified range. (For this example, assume that the table with 

from 1 to 10.) Thus, at this point, the person making the calculation would look up the values of 

log 10 2.345 and log 10 3.152, obtaining .3701 and .4986. Then he or she would add these two 

numbers to get 0.8687. Finally, there would be a different inverse table that would give the value 

of 10.8687, which is roughly 7.391. It would follow that the desired product would be about 

739,100,000. (The tables had more decimal places than I've given in this example. For this 

example, the exact product is 739,144,000. 

 

 

 

 

 

 

 

 



Practice Log Problems 

 

Now, we will apply these rules to solve some problems! 

 

1) Solve for x in the following equation: 𝒍𝒐𝒈𝟐 (𝒍𝒐𝒈𝟐(𝒍𝒐𝒈𝟐(𝒙))) = 𝟐. 

 

This one isn't too bad. Just convert the given log statement to an exponential to get: 

 

(𝑙𝑜𝑔2(𝑙𝑜𝑔2(𝑥))) = 22 = 4 

 

Now, we just repeat the process to get: 

 

𝑙𝑜𝑔2(𝑥) = 24 = 16 
 

And…one more time, to solve for x: 

 

𝑥 = 216 = 65536 
 

 

2) The sequence log12 162, log12 x, log12 y, log12 z, log12 1250 is an arithmetic progression. 

What is x? 

 

In an arithmetic sequence, the difference between consecutive terms is the same. Let d be this 

common difference. The given sequence has five terms. Thus, the difference between the first two 

terms is d and the difference between the first and last terms is 4d. (This is because we add d four 

times to get from the first term to the fifth.) This gives us the following two equations: 

 

log12 x - log12 162 = d 

 

log12 1250 - log12 162 = 4d 

 

The second equation has only one variable, so let's focus on this one. Just use the log subtraction 

rule to get: 

 

𝑙𝑜𝑔12
1250

162
= 4𝑑 

Let's divide both the numerator and denominator by 2 to reveal a better way of looking at that log: 

 

𝑙𝑜𝑔12
625

81
= 4𝑑 

 

𝑙𝑜𝑔12
54

34
= 4𝑑 

 



𝑙𝑜𝑔12(
5

3
)4 = 4𝑑 

 

4𝑙𝑜𝑔12
5

3
= 4𝑑 

 

So, the power rule came in handy and now we can solve for d: 

 

𝑑 = 𝑙𝑜𝑔12
5

3
 

 

Plugging into the first equation, we see: 

 

𝑙𝑜𝑔12𝑥 − 𝑙𝑜𝑔12162 = 𝑙𝑜𝑔12
5

3
 

𝑙𝑜𝑔12
𝑥

162
= 𝑙𝑜𝑔12

5

3
 

 

Now, since both sides are log of something and equal to one another, and log is a monotonically 

increasing function, we know that both of the things we are taking log of are equal: 

 
𝑥

162
=
5

3
 

 

𝑥 = 270 
 

This is the "proper" way to solve the problem. A student with an intuitive understanding would 

see that if we took the log of terms in a geometric series we would get an arithmetic series, so that 

the terms 162, x, y, z and 1250 form a geometric series and then would then solve for the common 

ratio and get 5/3 and multiply 162 by that common ratio. 

 

 

3) What is the value of (𝟖𝟏𝒍𝒐𝒈𝟑𝟏𝟐𝟑𝟒)𝟎.𝟐𝟓? 

 

This looks daunting, but let's use some exponent rules first and go from there. 81 can be re-

expressed as 34: 

 

(81𝑙𝑜𝑔31234)0.25 = (34𝑙𝑜𝑔31234)0.25 

 

Now, the exponent rule here is to multiply the 0.25 through the exponent to get: 

 

(34𝑙𝑜𝑔31234)0.25 = 34(0.25)𝑙𝑜𝑔31234 
 

Now, we can just multiply 4 and 0.25. Convenient! 

 

34(0.25)𝑙𝑜𝑔31234 = 3𝑙𝑜𝑔31234 



 

This should look familiar; it's our self-referential question. The answer is just 1234. 

 

3𝑙𝑜𝑔31234 = 1234 

 

 

4) Determine the ordered pair, (a, b), that satisfies the following pair of equations: 

 

𝒍𝒐𝒈𝟏𝟔𝒂
𝟐 + 𝒍𝒐𝒈𝟖𝒃

𝟑 = 𝟏𝟏 

 

𝒍𝒐𝒈𝟖𝒂
𝟔 + 𝒍𝒐𝒈𝟏𝟔𝒃

𝟏𝟎 = 𝟑𝟐 

 

As we analyze this problem, we see that we must change bases. Since 8 and 16 are both powers of 

2, 2 is a good choice: 

 

𝑙𝑜𝑔2𝑎
2

𝑙𝑜𝑔216
+
𝑙𝑜𝑔2𝑏

3

𝑙𝑜𝑔28
= 11 

 

𝑙𝑜𝑔2𝑎
6

𝑙𝑜𝑔28
+
𝑙𝑜𝑔2𝑏

10

𝑙𝑜𝑔216
= 32 

 

Solve for the logs with constants only: 

 

𝑙𝑜𝑔2𝑎
2

4
+
𝑙𝑜𝑔2𝑏

3

3
= 11 

 

𝑙𝑜𝑔2𝑎
6

3
+
𝑙𝑜𝑔2𝑏

10

4
= 32 

 

Now, use the power rule: 

 

2𝑙𝑜𝑔2𝑎

4
+
3𝑙𝑜𝑔2𝑏

3
= 11 

 

6𝑙𝑜𝑔2𝑎

3
+
10𝑙𝑜𝑔2𝑏

4
= 32 

 

At this point we see the expressions 𝑙𝑜𝑔2𝑎 and 𝑙𝑜𝑔2𝑏. A very helpful idea when we have 

complicated repeated expressions in equations is to create a new variable to stand for them and 

rewrite the equations with those new variables. Let x = log2a and y = log2b. Simplify fractions and 

now we get: 
𝑥

2
+ 𝑦 = 11 



 

2𝑥 +
5𝑦

2
= 32 

 

Now, we can easily see that this is just a regular system of 2 linear equations! 

 

Use any method to solve. We can rewrite the first equation and solve for x, yielding x = 22 - 2y. 

Then we can substitute for x in the second equation: 

 

2(22 − 2𝑦) +
5𝑦

2
= 32 

 

Multiply everything by 2: 

 

4(22 − 2𝑦) + 5𝑦 = 64 

 

88 − 8𝑦 + 5𝑦 = 64 

 

88 − 3𝑦 = 64 

 

3𝑦 = 24 

 

𝑦 = 8 

 

It follows that x = 22 - 2(8) = 6. 

 

Now that we have x and y, we can find a and b: 

 

𝑥 = 6 = 𝑙𝑜𝑔2𝑎, so a = 26 = 64 

 

𝑦 = 8 = 𝑙𝑜𝑔2𝑏, so b = 28 = 256 

 

 

 

5) What is the following sum: ∑ 𝒍𝒐𝒈𝟏𝟎(𝐭𝐚𝐧 𝒊°)
𝟖𝟗
𝒊=𝟏 ? 

 

This is again a problem that looks daunting. Also, it does require some trig information. 

Specifically that tan x° and tan (90-x)° are reciprocals of one another. This information can easily 

be seen in a right triangle with acute angles x° and (90-x)°. Let's say the side opposite to angle x° 
has length a and the side opposite to angle (90-x)° has length b. Then, by definition of tangent, we 

have 𝑡𝑎𝑛𝑥° =
𝑎

𝑏
 and tan(90 − 𝑥)° =

𝑏

𝑎
. Multiplying these two fractions gives an answer of 1. 

 

Now, when we look at this sum, let's "expand" it. It says find: 



 

𝑙𝑜𝑔10(tan1°) + 𝑙𝑜𝑔10(tan2°) + ⋯+ 𝑙𝑜𝑔10(tan 88°) + 𝑙𝑜𝑔10(tan89°) 
 

If we pair up the first and last terms, and we use the fact about the product of the tangents of 

complementary angles we just derived, we have: 

 

 

𝑙𝑜𝑔10(tan 1°) + 𝑙𝑜𝑔10(tan 89°) = 𝑙𝑜𝑔10((tan1°)(tan89°)) = 𝑙𝑜𝑔101 = 0 
 

Now, we can continue to form pairs of angles for x = 2, 3, …, 44, each of which, when we sum 

the corresponding two terms of the sum, will sum to 0.  

 

This leaves one unmatched term: 

 

𝑙𝑜𝑔10(tan 45°) = 𝑙𝑜𝑔101 = 0 
 

But, as we can see, this is no problem.  

 

It follows that the value of the sum is 0. Notice that the base of the logarithm never really came 

into play in this problem. This sum is 0 regardless of the base chosen for the log. 

 

 

 

 

6) Let A, B and C be three positive integers such that gcd(A, B, C) = 1 and 

 

𝑨𝒍𝒐𝒈𝟐𝟎𝟎𝟓 + 𝑩𝒍𝒐𝒈𝟐𝟎𝟎𝟐 = 𝑪 

 

What are A, B and C? 

 

We first use the power rule backwards: 

 

𝑙𝑜𝑔2005
𝐴 + 𝑙𝑜𝑔2002

𝐵 = 𝐶 
 

Then, let's do the log sum rule backwards: 

 

𝑙𝑜𝑔2005
𝐴2𝐵 = 𝐶 

 

Now, we can write the corresponding exponent statement, by definition: 

 

200𝐶 = 5𝐴2𝐵 
 

Prime factorize 200… 

 

(2352)𝐶 = 5𝐴2𝐵 
 



23𝐶52𝐶 = 5𝐴2𝐵 
 

For these to be equal, we must equate coefficients. Now, we have 

 

A = 2C and B = 3C. 

 

We can set C = 1, A = 2 and B = 3 and this is the unique positive integer solution where A, B and 

C don't share any common factors. 

 

 

 

7) What is the value of the following sum: ∑
𝟏

𝒍𝒐𝒈𝒊𝟏𝟎𝟎!

𝟏𝟎𝟎
𝒊=𝟐  

 

This looks a bit like the tangent problem in that the terms are scary, but maybe some nice 

simplification will occur. The big problem is that the log bases are all different. We might want 

the bases to all be the same. Let's just change a base to a common base. It doesn't really matter 

which one, as we will soon see. I'll just call it b for now: 

 

 

∑
1

𝑙𝑜𝑔𝑖100!
= ∑

1

𝑙𝑜𝑔𝑏100!
𝑙𝑜𝑔𝑏𝑖

=

100

𝑖=2

100

𝑖=2

∑
𝑙𝑜𝑔𝑏𝑖

𝑙𝑜𝑔𝑏100!

100

𝑖=2

 

 

Now, the big next step is realizing that we can use the change of base log rule BACKWARDS!!! 

To simplify the sum: 

 

∑
𝑙𝑜𝑔𝑏𝑖

𝑙𝑜𝑔𝑏100!

100

𝑖=2

= ∑𝑙𝑜𝑔100!𝑖

100

𝑖=2

 

 

This is really shorthand for 𝑙𝑜𝑔100!2 + 𝑙𝑜𝑔100!3 +⋯+ 𝑙𝑜𝑔100!99 + 𝑙𝑜𝑔100!100. 

 

Since our bases are all the same, we can just use the log addition rule over and over again, to get: 

 

∑𝑙𝑜𝑔100!𝑖

100

𝑖=2

= 𝑙𝑜𝑔100!(2 × 3 × …× 99 × 100) 

 

But…WAIT…that product inside the log is just a factorial…in fact, it's 100! So we now have 

 

∑𝑙𝑜𝑔100!𝑖

100

𝑖=2

= 𝑙𝑜𝑔100!(2 × 3 × …× 99 × 100) = 𝑙𝑜𝑔100!100! = 1 

 

How elegant!!! 

 


