
Cartesian Products 
 

A Cartesian product is defined as follows: 

 

A X B = { (a,b) | a  A  b  B } 

 

This is a set of ordered pairs, hence the order here matters. 

 

If we want the size of the Cartesian Product of two sets, we can 

get it as follows: 

 

|A X B| = |A|x|B|. 

 

One way to see that this is the case is to list out all the elements 

in a Cartesian product in a table. Label all the rows with 

elements from the set A, and all the columns with the elements 

from the set B. Each cell in this table will contain an unique 

element of the Cartesian product of A and B. Furthermore, 

each element of the Cartesian product can be found on the 

table. Thus, the total number of elements in the Cartesian 

product is the total number of cells in the table, |A|x|B|. 

 

Here is a problem involving cartesian products: 

 

If A  C and B  D, then A x B  C x D. 

 

We must show that if (x,y)  A x B, then (x,y)  C x D. 

Consider an element (x,y)  A x B.  

By definition of a cartesian product, we must have that xA 

and yB. 

Using our given subset information, we can deduce that xC 

and yD. 

Finally, considering the definition of a cartesian product, we 

have that (x,y)  C x D, as desired. 



Power Sets 

 
A power set of a set A is defined as the set of all possible 

subsets of that set. So, for example, if a set A = {2,3,5}, then the 

power set of A, which we will denote as power(A) (in the book 

they use some fancy letter in italics) will be the following set: 

 

power(A) = { , {2}, {3}, {5}, {2,3}, {2,5}, {3,5}, {2,3,5} } 

 

Thus it is a set of sets. Now, using the result we derived earlier, 

we find that 

 

|power(A)| = 2|A|. 

 

Here is an example of an identity and proof dealing with power 

sets: 

 

Prove that Power(A)  Power(B)  Power(A  B). 

 

Let the set A’ be an arbitrarily chosen subset of Power(A) and 

let the set B’ be an arbitrarily chosen subset of Power(B). We 

must now show that  

 

A’  Power(A  B) and that B’  Power(A  B) 

 

Any arbitrarily chosen subset of Power(A) only contains 

elements from the set A. But we know that Power(A  B) 

contains all subsets comprised of elements from the set A  B. 

In particular, it contains every subset comprised of elements 

from the set A. But, A’ must be one of these subsets. Hence, we 

have shown that A’  Power(A  B). The proof that B’  

Power(A  B) is analogous to the proof above. 

 

 



Here is a another problem using power sets: 

 

For arbitraray sets A and C from a given universe, show that if 

A  C, then Power(A)  Power(A  C) 

 

If A  C, then A  C = C, so we just need to show  Power(A)  

Power(C). Consider any element of Power(A). It must be a 

subset with elements from A. But, this element MUST be 

contained in Power(C), since this set contains all subsets of 

elements in C. One of these subsets will contain exactly the 

desired elements from A, since A  C. 

 

Here is a slightly different proof in chart format: 

 

We must show that Power(A)  Power(A  C). 

If XPower(A), then XPower(A  C). 

1) XPower(A)   Given 

2) XA    Defn of Power Set 

3) A AC   Defn of  

4) X AC   Transitivity of  (This can be  

     proved in a few steps.) 

5) XPower(A  C)  Defn of Power Set 

 

 

From the intuition used in this problem, we can essentially 

claim a more general result: 

 

If A  B, then we have Power(A)  Power(B). 

 

 

 

 

 

 



The Inclusion-Exclusion Principle 

 
 Let A and B denote two finite sets.  Then, we have: 

 

|A  B| = |A| + |B| – |A  B|. 

 

This can easily be seen by a Venn Diagram: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Logically, we can argue that since each element of A  B 

belongs to either A or B, the sum |A| + |B| includes a count for 

each of the elements of A  B, but those elements of A  B are 

counted twice.   

 

Thus, |A| + |B| – | A  B | counts each element of A  B exactly 

once, that is, it is equal to |A  B|.   

 



Here is a more rigorous proof of the inclusion-exclusion 

principle: 

 

We first claim that the following is a disjoint union, meaning 

that the two sets on the right of the equal sign have no elements 

in common. 

 

A = (A – B)  (A  B)                            

 

Thus, by the definition of set equality, we want to prove that 

  

1. A  (A – B)  (A  B)                            

2. (A – B)  (A  B)  A                            

3. (A – B)  (A  B) =                            

 

To prove 1, let x  A.  Either x  B or x  B. In the first case, x 

 A  B by definition, and in the second case, we have x  A 

and x  B, which means x  A – B by definition.   

 

To prove 2, note that A – B  A because each x  A – B must 

also have x  A by the definition of set difference.  Also, A  B 

 A because each x  A  B must also have x  A by the 

definition of intersection. Thus, (A – B)  (A  B)  A by the 

definition of set union and the subset relationship. 
 

To prove 3, note that each x  A – B must satisfy x  B by the 

definition of set difference.  Also, each x  A  B must satisfy x 

 B, by the definition of set intersection.  Thus, it is impossible 

to have x  (A – B)  (A  B), meaning that the set is empty. 

 

If we swap A and B in the formula A = (A – B)  (A  B), we 

find the following: 

   

B = (B – A)  (B  A) 



Applying the Sum Principle  we have the following: 

  |A| = |A – B| + |A  B|                                

and   |B| = |B – A| + |B  A|                                 

 

Now, we can find another disjoint union. We have already 

shown that (B  A) is disjoint from the other two sets, and A – 

B and B – A can not share any elements at all since the first 

only has elements from A and the second only elements from B. 

   

A  B = (A – B)  (B – A)  (B  A)             

 

which implies the following equation using the Sum Principle: 

 

|A  B| = |A – B| + |B – A| + |B  A|               

 

Adding the equations from the top of the page we get: 

 

|A| + |B| = |A – B| + |A  B| + |B – A| + |B  A|, so 

 

|A| + |B| - |B  A| = |A – B| + |A  B| + |B – A|  

 

But, we know that 

 

|A  B| = |A – B| + |B – A| + |B  A| 

 

Thus, we have: 

 

|A  B| = |A| + |B| – |A  B|. 
 



Inclusion-Exclusion Principle for 3 Sets 

 
Let A, B, and C denote three finite sets.  Then, we have: 

 

|A  B  C| = |A| + |B| + |C|  

                        – |A  B| – |B  C| – |A  C|  

                        + |A  B  C|. 

 

 

Applying the previous theorem to sets A and (B  C), we have 

 

  |A  B  C| = |A  (B  C)|  

               = |A | + |B  C| – |A  (B  C)| 

 

Note that |B  C| = |B| + |C| – |B  C|                     

 

And note that |A  (B  C)| = | (A  B)  (A  C) |, by the 

distributive law, so  

 

       |A  (B  C)| = | (A  B)  (A  C) | 

               = |A  B| + |A  C|  – |(A  B)  (A  C)| 

               = |A  B| + |A  C |  – |A  B  C| 

 

Thus, substituting into the above equation we find: 

 

|A  B  C| = |A | + |B  C| – |A  (B  C)| 

 

     = |A | + |B  C| – (|A  B| + |A  C |  – |A  B C|) 

 

     = |A | + |B  C| – |A  B| – |A  C |  + |A  B  C| 

 

     = |A| + |B| + |C| – |B  C| – |A  B| – |A  C |  +  

                         |A  B  C| 



Let's use the Inclusion-Exclusion Principle to deal with a 

counting problem involving sets: 

 

David owns a box full of blocks which come in two 

colors(red,blue), two sizes(small, large), and two weights(light, 

heavy). He owns each possible combination of block. The total 

number of blocks that are red or small or light is 25. Of these, 

exactly 13 are small, 5 are both small and red, and 3 are red, 

small and light. Also, exactly 20 blocks are either red or light. 

But only 7 blocks are red and light. There is a total of 14 red 

blocks. Finally, of all the blocks 18 are not light. Find the 

following pieces of information: 

 

1) Total number of blocks that are either red or small 

2) Total number of light blocks 

3) Total number of blocks that are small and light  

 

Let A be the set of red blocks, B be the set of small blocks, and 

C be the set of light blocks. 

 

Using the given information, we have: 

 

|A  B  C| = 25 

|B| = 13 

|A  B| = 5 

|A  B  C| = 3 

|A  C| = 20 

|A  C| = 7 

|A| = 14 

 

 

 

 

 



Using the Inclusion-Exclusion Principle with sets A and B, we 

have 

 

|A  B| = |A| + |B| - |A  B| 

              = 14 + 13 - 5 

              = 22 

 

Thus there are 22 blocks that are either red or small. 

 

Using the Inclusion-Exclusion Principle again, 

 

|A  C| = |A| + |C| - |A  C| 

 20      = 14 + |C| - 7 

 

So, |C| = 13, the total number of light blocks. 

 

Now, apply the Inclusion-Exclusion Principle for three sets: 

 

|A  B  C| = |A| + |B| + |C| - |A  B| - |A  C| - |B  C| + |A  

B  C| 

 

25 = 14 + 13 + 13 - 5 - 7 - |B  C| + 3 

 

|B  C| = 6, total number of small light blocks. 

 

 

 


