
Last lecture we ended with the problem of showing the 

following: 

 

(((A  B)  C)  B) = (B  C) 

 

One way is to use a membership table: 

 

A B C B  C ((A  B)  C) B (((A  B)  C)  B) 

0 0 0 0 1 1 0 

0 0 1 0 1 1 0 

0 1 0 0 1 0 0 

0 1 1 1 0 0 1 

1 0 0 0 1 1 0 

1 0 1 0 0 1 0 

1 1 0 0 1 0 0 

1 1 1 1 0 0 1 
 

 

Next, we could use Set Laws to show the two expressions to be 

equivalent: 

 

    (((A  B)  C)  B)  

= (( A  B)  C)  B   (De Morgan’s) 

= (( A  B)  C)  B   (Double Negation) 

= (( A  B)  B)  C   (Associate & Commutative) 

= B  C     (Absorption) 

 

 

For this particular problem, we could show that each set is a 

subset of the other. However, for this particular problem, that 

is rather tedious. I will give other examples of this nature to 

illustrate this proof method later in the lecture. 

 

 



Example of a Set Proof 

 
If A  B = , then B  A. 

 

The standard method we will use with any if-then statement is 

to prove it directly, so to speak. We know that the statement is 

automatically true if the “if” clause is false. If fact, to establish 

the validity of the statement, we must only show that whenever 

the “if” clause is true, then the “then” clause must ALSO be 

true. 

 

In order to do this, we can do the following: 

 

1) Assume that the if clause is true. 

2) Under this assumption, make deductions using the laws and 

rules you know 

3) Hopefully show that the “then” clause follows logically from 

the deductions in part 2. 

 

So here we are going to assume that A  B = . 

Under this assumption we want to show that B  A is always 

true. 

 

If we have that A  B = , then we know that they do NOT 

share any common elements. Symbolically we have the 

following: 

 

(x | xA  xB) 

 

Now, under this assumption, we need to show that B  A. In 

order to show that one set is a subset of another, we must show 

that any element in the first set belongs in the second. In 

essence, for an arbitrary element x, we must show the 

following: 



 

if xB then xA. 

 

To show this, we simply assume that xB. But, from before, we 

already KNOW that (x | xA  xB). What this means in 

English is that there is NO element that belongs to both A and 

B. If we know that the particular element x belongs in B, then 

it CAN NOT belong in A. Symbolically we have x  A.  

 

But, we have for all elements that xA  xA.  Since xA is 

false from what we deduced above, we MUST HAVE xA, 

which is exactly what we needed to prove. 

 

So, whenever A  B = , we have shown that B  A holds. 

 

 

 

Using the Contrapositive for a proof 
 

Let’s consider proving the same statement... 

 

If A  B = , then B  A. 

 

The contrapositive of this statement is the following: 

 

if ( B  A) then (A  B = ). 

 

If we prove this statement, we have also proven the original, 

since a statement and its contrapositive are equivalent. 

 

So, we will assume that ( B  A). Under this assumption we 

must show that A  B  . 

 



If we have that ( B  A), then there exists an element x such 

that x is IN B but NOT IN the complement of A. Symbolically 

we have: 

 

x | xB  xA 

 

If we have an element xA, by definition of complement, we 

must have that xA. So we have 

 

x | xB  xA. 

 

But, this means that x  AB!!! From that we can conclude 

that AB  , as desired. 

 

 

Proof by Contradiction 

 
Most of this will look quite similar to the proof before. In 

essence there is little difference between a proof by 

contradiction and a proof of the contrapositive. Here’s the 

basic idea: 

 

Start out as if you were directly proving the statement: 

 

1) Assume the “if” part of the statement. 

 

2) Next, in contradiction to what you are trying to prove, 

assume the OPPOSITE of the “then” clause. 

 

3) Start with the assumption in step 2 and make logical 

deductions 

 

4) Eventually, you should reach a conclusion that is absurd, or 

directly contradicts the first assumption. Either way, this 



shows that the first two assumptions can NOT be true together, 

which, in essence, proves the statement. 

 

Let’s go back to our favorite example :) 

 

If A  B = , then B  A. 

 

So we first assume that A  B = . 

Next we will also assume that B  A is false. 

 

If we have ( B  A), then we must have an element x that is 

in B that is NOT in the complement of A. Symbolically we 

have: 

 

x | xB  xA 

 

As before, this is equivalent to... 

 

x | xB  xA. 

 

But this is impossible – it contradicts our assumption A  B = 

. Thus, we must have made a mistake in our proof. Every 

step we took was logical EXCEPT for our assumption. Thus, 

this is what must be wrong...we can conclude that the opposite 

of it, is indeed true. This proves that  

 

If A  B = , then B  A. 

 

 

 

 

 

 

 



Couple More Examples 

 
Prove that (B  C)  (B – A)  (C – A). 

 

To prove an if-then statement, we assume the premise is true. 

With that given information, we must show that the conclusion 

always follows. 

 

Since B  C, we know for an arbitrary xB, that xC. 

 

Now, we must prove (B – A)  (C – A) holds under this 

assumption. 

 

To prove (B – A)  (C – A), we must prove for an arbitrary x, 

that if xB – A, then  xC – A. 

 

To prove this statement, we assume that for an arbitrary x, 

xB – A. By definition, this means that xB  xA. Since we 

know that B  C, we can deduce that xC. So now we know 

that xC xA, thus xC – A, proving the assertion. 

 

--------------------------------------------------------------------------------- 

 

Prove A  B  (A  B)  (A  B) 

 

if A  B then we know  

 

x | (xA  xB)  (xB  xA), since the definition of 

equality of sets is  

 

x [(xA  xB)  (xB  xA)]. 

 

 



Without loss of generality, let x be an arbitrary element such 

that xA  xB. 

 

If this is the case, then we know that x(A  B), since xA. 

 

However, we also know that x(A  B), since xB. 

 

Since there exists an element x contained in the set (A  B), but 

that is NOT contained in the set (A  B), we can conclude that 

the two sets can not be equal, since the definition for equality 

says for each element contained in one set must be contained in 

the other. 

 
 


