
Composition of Relations 

 

In math class, given two functions f(x) and g(x), you probably 

had to figure out the composition of the functions, which is 

denoted either by f(g(x)) OR fg(x). 

 

Basically, the way this worked is that you “plugged in” your 

original x into one function, THEN you used the “answer” that 

you got from that function to “plug in” to the second function. 

And the order in which you did it mattered. 

 

The same will be true of the composition of two relations. Here 

is the formal definition of the composition of two relations R 

and S, where R  A x B, S  B x C: 

 

S  R = { (a,c) | a  A  c  C  (b | (a,b) R  (b,c) S) } 

 

Notice that this is extremely similar to the definition of 

function composition you learned in high school. Basically, 

when you compose the relations R and S, you get a third 

relation which relates elements from the set A to the set C, as 

long as the “answer” from relation R can be the input for 

relation S. 

 

We can use a directed graph again. Consider this example: 

A = { ABC, NBC, CBS, FOX, HBO} 

B = { NYPD Blue, Simpsons, Letterman, ER, X-Files,  

          Dennis Miller Show, Monday Night Football} 

C = { Dennis Miller, Marge, Rick Schroeder, Gillian Anderson,  

           Noah Wyle} 

R = {(ABC, NYPD Blue), (NBC, ER), (CBS,Letterman),  

         (HBO, Dennis Miller Show), (FOX, X-Files) } 

S = { (MNF, Dennis Miller), (Simpsons, Marge),  

         (ER, Noah Wyle), (Party of 5, Neve Campbell)  

         (D. Miller Show,Dennis Miller),(NYPD, Rick Schroeder) } 



Theorems about Relation Composition 

 
If R  A x B, S  B x C and T  C x D, then we have the 

following: 

 

(T  S)  R = T  (S  R) 

 

Essentially, when doing multiple relation composition, 

associativity is preserved. 

 

First of all, we see that both sides define a relation over the set 

A x D. Next, we have to prove that both define the same 

relation over that set. 

 

Formally, if we break down the definition, we have: 

 

(T  S)  R = {(a, d)| a  A and d  D, and for some b  B, (b, 

d)  T  S and (a, b)  R}, 

                 

Since (b, d)  T  S  means (b, c)S and (c, d)T for some c  

C, by definition of T  S, the relation (T  S)  R  consists of 

ordered pairs (a, d)  A  D such that for some b  B and 

some c  C, (a, b)  R, (b, c)S and (c, d)T. 

 

If we break down the definition of T  (S  R) in a similar 

manner, we will get the exact same thing. Similarly, using the 

directed graph of the situation will lead to the same conclusion. 

 

Note: that if a and b are elements and R is a relation, the 

statement (a, b)  R may be written as aRb. 

 

 

 

 



Let R  A  B, S  B  C, and T  B  C denote 3 binary 

relations.   

 

Then we have the following: 

 

(1) (S  T)  R = (S  R)  (T  R) 

(2) (S  T)  R  (S  R)  (T  R).  (Usually, this is a proper 

              subset.) 

 

Here is why the first one holds: 

 

First, plug into the definition of (S  T)  R: 

 

(S  T)  R: 

 

= {(a, c)| a  A  c  C  b  B| aRb  (b, c)  S  T} 

    

= {(a, c)| a  A  c  C  b  B| aRb  ((b, c) S  (b, c)  

T)} (Definition of ) 

 

= {(a, c)| a  A  c  C,  bB | ((aRb  bSc)  (aRb bTc))}  

(Distributive property) 

 

= {(a, c)| a  A   c  C  b  B | aRb  bSc}   

   {(a, c)| a  A   c  C  b  B | aRb  bTc} 

 

= (S  R)  (T  R), definition of (S  R) and (T  R). 

 

Every single one of these steps were equality (bidirectional) 

steps, thus the equality between the sets holds. Each step would 

be valid working "backwards" to show that the RHS is a 

subset of the LHS. 

 

 



(S  T)  R  (S  R)  (T  R) 

 

To prove this statement, we must show that an arbitrarily 

chosen element of the LHS is also an element of the RHS. Let 

(a, c) be an arbitrarily chosen element of (S  T)  R. 
 

Since (a, c)  (S  T)  R there exists b  B, such that aRb and 

(b, c)  (S  T), by the definition of  .  Thus, (b, c)  S and (b, 

c)  T, by the definition of S  T.  Therefore, since aRb, so (a, 

c)  (S  R) and (a, c)  (T  R), by the definition of  . Thus, (a, 

c)  (S  R)  (T  R), and (2) is proved. 

 

As an exercise, I want you to find a counterexample to the 

claim that (S  R)  (T  R)  (S  T)  R. 

 

Here is a counter example: 

A = {1,2} B = {a,b} C = {x,y} 

R = {(1,a), (1,b)} 

S = {(a,x)} 

T = {(b,x)} 

 

Here we have S  T = , so (S  T)  R = . 

But, S  R = {(1,x)} and T  R = {(1,x)}  

so (S  R)  (T  R) = {(1,x)}, proving the statement false. 

 

Intuitively, the idea here is that relations S and T provide 

different pathways for 1 to be related to x. From the graph 

point of view of relations, we can have different paths that 

reach from 1 to x (different set of roads). 

 

Prove or disprove: If S  R = T  R, then S = T. 

 

This statement is also false. Simply use the counter example 

given in the problem above to validate this claim. 



Examples of Identifying Properties in Relations 

 

Is the following relation reflexive, irreflexive, symmetric, 

antisymmetric, or transitive? R = {(a,b) | a,bZ+  a, 2a, and b 

are side lengths of a triangle} Note: For all triangles, the sum 

of the lengths of any two sides must exceed the length of the 

third side. 

 
 

Reflexive? No – because (a,a)R, this is because a triangle can 

not have sid lengths, a, a and 2a. 

 

Irreflexive? Yes – the previous argument holds for all positive 

integers a. 

 

Symmetric? No – (a, 2a)R, since we can have a triangle with 

side lengths a, 2a and 2a. However, (2a, a)R because we can 

not have a triangle with side lengths 2a, 4a and a. 

 

Antisymmetric? Yes – If we have a  b, then we have (a,b)R. 

To prove this, consider a forming a triangle with side lengths a, 

2a, and b. We know that we must have a+b > 2a for a triangle 

to be formed. BUT, a+b  a+a = 2a, which means that a+b is 

NOT greater than 2a. Thus, in this situation, we have (a,b)R. 

Thus, for any element (a,b)R, we must have a < b. For each of 

these elements, we can guarantee that (b,a)R since b > a. 

 

Transitive? No – (a, 2a)R as shown above, and we also know 

that (2a, 4a)R, by a similar analysis. But, we can show that 

(a,4a)R because a triangle can not have side lengths a, 2a and 

4a. 

 

 

 



Consider the following relation: 

 

R = { (a,b) | aZ+  bZ+   ab = c2 for some positive integer c} 

 

Prove that it is an equivalence relation. 

 

Reflexive? Yes – (a,a)R because a2 = c2, when c is equal to a, a 

positive integer. 

 

Symmetric? Yes – if (a,b)R, we must show that (b,a)R. If 

(a,b)R, we know that ab= c2, for a positive integer c. But, we 

know that multiplication is commutative, so ba = c2. Thus, 

(b,a)R. 

 

Transitive? Yes - if (a,b)R and (b,c)R, we must show that 

(a,c)R. We know that if (a,b)R, then ab = d2, for some 

positive integer d. Furthermore, if (b,c)R, then bc = e2, for 

some positive integer e. 

 

ab = d2 

bc = e2 

Multiplying these equations, we find  

 

ab2c = (de)2 

ac = (de/b)2 

Now, if we can show that de/b is an integer, we will have shown 

that (a,c)R. 

 

Technically speaking, this is difficult to show. But, we know 

that if a number is not a perfect square, its square root is 

irrational. But, from the above we have the square root of ac is 

de/b, a rational quantity. Thus, we must have that ac is a 

perfect square, which means de/b is an integer. 

 



Closures for Binary Relations 

 

Let R  A  A denote a binary relation.  The following 

relations defined over A are called closures: 

 

The reflexive closure of R is r(R) = R  {(a, a) | a  A}. 

 

The symmetric closure of R is s(R) = R  R–1. 

 

The transitive closure of R is t(R) = R  R2  R3  ..., where R2 

= R  R, R3 = R2  R, etc., where  denotes relation composition.  

Thus, (a, b)  t(R)    (a, b)  Rn,  for some n  1   there exist 

a1, a2, …, an  A, an = b, for some n  1, such that (a, a1), (a1, 

a2), …, (an1, an)  R, i.e., there exists a direct path of n edges 

connecting a to b in the digraph for the relation R. 

 

It can easily be seen that the names of these closures are 

justified in that for any binary relation R, r(R) is reflexive, s(R) 

is symmetric, and t(R) is transitive.  Also, we can define the 

composition of these closures, e.g., tr(R) = t(r(R)), rs(R) = 

r(s(R)), etc.   

 

Let’s look at an example. Let A = {1, 2, 3, 4, 5} and let R = 

{(1,2), (2,3), (4,4), (4,5)} then we have the following: 

 

r(R) = {(1,1), (2,2), (3,3), (5,5), (1,2), (2,3), (4,4), (4,5)} 

s(R) = {(1,2), (2,1), (2,3), (3,2), (4,4), (4,5), (5,4)} 

t(R) = {(1,2), (2,3), (4,4), (4,5), (1,3)} 

 
 

 

 
 

 



Let’s look at some relation problems dealing with closures:  

 

1) If R is transitive, then r(R)  is transitive. 
 

Let R be a transitive relation. Now, consider r(R). The 

definition for transitivities says that A relation R is 

transitive if aRb and bRc implies aRc. Let’s consider this 

statement for arbitrary values a,b and c where the three are 

distinct, and when they are not.  

 

If the three are distinct, we know that only if (a,b)R and 

(b,c)R would (a,b)r(R) and (a,b)r(R). But in this 

situation, we have (a,c)R, which means that (a,c) r(R).  
 

Now, we must consider the cases where a, b and c are not 

necessarily distinct. There are three of these cases : 

 

1) a=b, but bc 

2) ab but b=c 

3) a=b=c 
 

In case 1, if we have that (a,a)r(R) and (a,c)r(R), we 

know that transitivity holds since transitivity implies that 

(a,c)r(R), but this was part of the premise. Cases 2 and 3 

also boil down the same way. Essentially, if either a=b or 

b=c, if the premise of transitivity is true, then the conclusion 

MUST BE.  
 

 

 

 

2) If R is symmetric and R  T, then T is symmetric. 
 

This is false. Consider the following counter example: 

 

R = {(a,b),(b,a)} and T = {(a,b),(b,a),(b,c)} 



 

 

3) If R  T, then s(R)  s(T) 
 

This is false as well. Consider R = {(1,2), (2,1)} and T = 

{(1,2)}. 
 

 

4) (R  T)-1 = R-1  T-1 
 

This is true. To show this, we must show that the LHS is a 

subset of the RHS and vice vera. 

 

Consider an arbitrary element (a,b) of  (R  T)-1. This 

means that (b,a) MUST BE an element of R  T. This leaves 

us with two possibilities. Either we have (b,a)  R or (b,a)  

T. Consider the first case. In this case we must have that 

(a,b)  R-1, which certainly means that (a,b)  R-1  T-1. 

Now we must consider the other case - (b,a)  T. This means 

that (a,b)  T-1, which also shows that (a,b)  R-1  T-1. 

From this we can conclude that (R  T)-1  R-1  T-1 

 

Now, we must show the other side that  R-1  T-1    (R  T)-

1. Consider an arbitrary element (a,b) of R-1  T-1.  There 

are two possibilities here. Either we have (a,b)  R-1 or (a,b) 

 T-1. Consider the first. In this case, (b,a)  R. If this is the 

case then certain (b,a)  R  T. But if this is the case, then 

we must have (a,b)  (R  T)-1. Our other case to consider is 

(b,a)  T. Similarly, we know that  (b,a)  R  T and (a,b) 

 (R  T)-1. Thus, either way, we have shown that any 

arbitrary element of R-1  T-1  must also be in the set  (R  

T)-1. This proves that R-1  T-1    (R  T)-1. Combining this 

with the first half of the proof, we find that (R  T)-1 = R-1  

T-1. 

 



5) Prove that t(R)  R  (R  t(R)). 

 

Consider an arbitrary element (a,b) t(R). We must show that 

(a,b)  R  (R  t(R)). 

 

If we have that (a,b)  R, we are done. 

 

Otherwise, we know that (a,b)R. This must mean that 

(a,b)Rn, where n is an integer greater than 1. 

 

But, consider the set R  t(R). This is equal to R  (R  R2  R3 

 ...) Applying each function composition, we find that this is 

 

(R2  R3  R4 ...) 

 

Clearly, Rn, where n is an integer greater than 1 is a subset of 

the set (R  t(R)) above. Thus, since (a,b)Rn, we must have 

that (a,b)  (R  t(R)), proving the original assertion. 

 

 

 
  

 


