
Mathematical Functions 

 

In mathematics, a function is an equation where you “plug in” 

a value, and get an “answer” so to speak. In particular, 

whenever you plug in a particular value, you must get a 

SINGLE answer. (You should also get the same answer 

always.) Functions graphed on the x-y plane have to pass the 

vertical line test. 

 

Now, in discrete mathematics, we will be using functions a bit 

differently & we will also coin a new term “relation”. In 

particular, a function is a specific type of relation. 

 

In standard high school mathematics, we typically deal with 

functions of one variable. We always graph a function of the 

form y=f(x), where the left hand side is entirely dependent on 

x. Depending on what the function f(x) is, there is always a set 

of values that are VALID to “plug” in to the equation.  This set 

is the domain. Similarly, the “answer” you get out of the 

function will always lie in a particular set. This set is the range. 

 

The problem with using standard functions for discrete 

mathematics is that many are defined for all real numbers. 

Namely, it would be nice if we could list every value in the 

domain of some function. But, we CAN NOT list out each real 

number. (We can list out each integer however...) 

 

The basis of functions and relations in discrete mathematics is 

the idea that values of a domain and range should be subsets of 

a set that can be listed, such as the integers, color, etc. 

 

As we go through different things, I will make analogies to 

mathematical functions, so you can see the similarities between 

these and the functions and relations for discrete mathematics. 

 



Relations 

 

A relation is something that relates one set of values to another 

set of values. Sometimes the relationship that is specified 

between sets is meaningful, other times it is not. 

 

In general, a relations are defined in the following manner: 

 

A relation R defined over sets A and B is a subset of A x B. 

Thus, we have R  A x B. This is known as a binary relation, 

because it relates elements between two sets. 

 

Consider this example: 

 

Let A = {Orange Juice, Cranberry Juice, Coke} and  

       B = {Rum, Vodka, Peach Schnapps} 

 

If you had some modicum of taste, we could define a relation 

Cocktails as follows: 

 

Cocktails = { (Orange Juice, Vodka),(Cranberry Juice, Vodka), 

       (Coke, Rum), (Orange Juice, Peach Schnapps) } 

 

Of course, if you do not have any standards, we could have up 

to 9 pairs listed in our relation for Cocktails. 

 

Graphically, we could use a directed graph to represent this 

information as follows: 

 

 

 

 

 

 



Of course, you can see there are some restrictions with only 

being able to define binary relations. For example, even if we 

extended our sets A and B from the previous example to 

provide for a fully stocked bar, we STILL could not define a 

relation that would include a Long Island Ice Tea. (For any 

one not familiar with this drink, it contains 4 or 5 elements 

from an extended version of set B.) 

 

Thus, we should define relations between more than two items. 

In general, we can define an n-ary relation as follows: 

 

An n-ary relation R over sets A1, A2, A3, ... An is a subset of the 

cartesian product A1 x A2 x A3 ... x An. The degree of this 

relation R is n. 

 

Now, we could define a relation on A x A x B x B x B x B that 

would include a Long Island Ice tea as an element of it. 

 

Of course, it is probably more typical that an n-ary relation be 

comprised of several different sets, but there is no rule against 

defining a relation using the same set repeatedly, as we have 

done above. 

 

Also, we can denote an n-ary relation using a table as follows: 

 

Mixer 1 Mixer 2 Liquor 1 Liquor 2 Liquor 3 Liquor 4 

Coke Sour Mix Vodka Tequila Rum Gin 

... ... ... ... ... ... 

 

 

 

 

 

 



Definitions for Binary Relations over A x A 

 
A majority of the binary relations we will be dealing with are a 

subset of the Cartesian product of a particular set with itself. 

 

If we have R  A x A, then we have the following definitions: 

 

1) R is reflexive if aA, (a,a) R. 

2) R is irreflexive if aA, (a,a) R. 

3) R is symmetric if aA, aRb  bRa  

4) R is anti-symmetric if aRb  bRa  a=b. 

5) R is transitive if  aRb  bRc  aRc. 

 

Consider the following relation R defined over {a , b, c}: 

 

R = { (a,b), (a,c), (b,a), (b,c), (c,c) } 

 

R is not reflexive since (b,b) R 

R is not irreflexive since (c,c) R 

R is not symmetric since we have (a,c)  R, but (c,a)  R. 

R is not anti-symmetric since (a,b)  R and (b,a)  R. 

R is not transitive since (b,a)  R, (a,b)  R, but (b,b)  R. 

 



Now, I will show you some examples of more meaningful 

relations that actual have some of these properties. 

 

Consider a relation R over the set {jelly, bread, ham} that is 

defined as foods that go well together. The relation could be: 

 

R = { (jelly, jelly), (bread, bread), (ham, ham), (jelly, bread), 

(bread, jelly), (ham, bread), (bread, ham) } 

 

This relation is reflexive since for each element a, (a,a) R. 

Essentially, we can mix anything with itself and it’ll still be 

edible. 

 

This relation is also symmetric. The reason for this is that if we 

can mix one food first with a second food, then we can ALSO 

mix the second food with the first. Symbolically, for each pair 

for related items a,b  A such that aRb, we also have bRa. 

 

This relation is NOT transitive. Essentially, the way we have it 

defined, we can have jelly with bread, and bread with ham, but 

we CAN NOT eat jelly with ham...and that violates transitivity. 

 



Now consider this example that is more mathematical. R  Z+ x 

Z+ as follows: 

 

R = {(a,b) | a Z+  b Z+  (n | n Z+  a = bn) } 

 

In English, this reads, the relation defined over all positive 

integers such that the first integer is a multiple of the second 

integer. 

 

This is reflexive because for all positive integers a, we have 

aRa, since a=1*a. 

 

This is anti-symmetric. If we have aRb and bRa, that means 

that a = n1*b for some integer n1, and that b = n2*a for some 

integer n2. Substitute in for b in the first equation to get 

 

a = n1*n2*a 

 

Divide both sides by a to get 1 = n1*n2. We know if n1,n2 Z+, 

then both of them MUST BE 1, hence a=b. 

 

This relation is transitive. Consider the situation where aRb 

and bRc. Then we have the following: 

 

a = nb, for some positive integer n 

b = mc, for some positive integer m 

 

Thus, a = n(mc) = (nm)*c which implies that aRc. 

 

Any relation that is reflexive, anti-symmetric AND transitive is 

known as a partial ordering relation. A partial ordering 

relation is one that can “compare” elements together in a 

hierarchical way. (One element is at least as high as another 

one, on the hierarchy.) 



Equivalence Relations 

 
An equivalence relation is one that is similar to a partial 

ordering relation defined above, but different in one critical 

aspect: it must be symmetric instead of anti-symmetric. In 

particular, an equivalence relation gives a way to group like 

elements in a set together.  

 

Consider this standard example used in CS classes when 

introducing an if statement: 

 

Define a relation over the set A = {0,1,...,100} as follows: 

 

R = {(a,b) | a A  b A  (a/10 = b/10) } 

 

In essence, this relates elements together if they lie within the 

same grade range(0-9, 10-19, ..., 90-99, 100).  

 

We can see how this is reflexive – for all elements a in A we 

have a/10 =  a/10 . 

 

Clearly this is symmetric too. If we have (a/10 = b/10) then 

we have (b/10 = a/10). Hence if aRb, then bRa. 

 

Finally, this is also transitive. If (a/10 = b/10)  and (b/10 = 

c/10), we always have that (a/10 = c/10). 

 



Try to show that modular equivalence is a equivalence relation 

over the positive integers. Remember that a modular 

equivalence is the following: 

 

a  b (mod m) iff m | (a-b). 

 

Thus the relation defined is the following: 

 

R = { (a,b) | a  b (mod m), where m is an arbitrary pos. int.} 

 

 

The relation is clearly reflexive since for all positive integers a, 

we have m | a – a. 

 

The relation is also symmetric since if we have aRb, that means 

that we have m | a – b. But, if m | a – b, we have that m | b – a. 

(Formally, you’d say that mc = a – b, for some integer c, then 

we have m(-c) = b – a, hence m | (b – a).) 

 

Finally, if we have aRb and bRc, then we know the following: 

 

m | a – b 

m | b – c 

 

m must divide the sum of these, hence we have  

 

m | (a – b) + (b – c), so m | a – c, but this implies that 

 

a  c (mod m), thus we have shown that aRc, as desired. 



Equivalence Classes 

 
Now, each element that is related to each other in an 

equivalence relation is said to be in the same equivalence class. 

More formally, we have the following: 

 

For an equivalence relation R over a set A, an equivalence class 

for an element x is defined as follows: 

 

[x] = { a | a  A, and aRx} 

 

Next, we can define a partition of the set A based of the 

relation R as follows: 

 

1) if x A  y A, either [x] = [y] OR [x]  [y] = . 

2) if xA, x[x] 

 

We can show that all equivalence relations R over a set A 

adhere to the restrictions above. 

 

We can prove 1, as follows: 

 

If [x]  [y] = , we are done. Now consider the other case that 

[x]  [y]  . That means that we have an element z of A such 

that z [x] AND z [y]. This means that zRx and zRy. But, by 

the symmetry or R we have xRz. Then, due to transitivity, we 

have xRy. Now, we can prove that [x]  [y]. Consider an 

arbitrary a[x]. This means we have aRx, but we also have 

xRy. Hence, by transitivity, we have aRy, so a[y], proving 

that [x]  [y]. Similarly, we can prove [y]  [x]. Thus, we have 

[x] = [y]. 

 

We always have x[x], since R is reflexive. 

 



If R is an equivalence relation defined over a set A, we will let 

A / R denote the set of these equivalence classes. Formally, 

 

A / R = {[x] | x  A}. 

 

Finally, we shall prove that any partition of a set such that 

each element is related to each other element in a partition is 

an equivalence relation. 

 

Let R be the relation for a particular partition. 

 

Clearly, R is reflexive, since each element in a single partition 

is related to itself, and each element belongs in a partition. 

 

R is also symmetric since if xRy, both x and y HAVE to be in 

the same partition, hence we must also have yRx. 

 

Finally, if we have xRy and yRz, that must mean that x, y, and 

z HAVE to be in the same partition. In particular, x and z are 

in the same partition, thus we also have xRz, proving that R is 

transitive as well.  

 

Hence, R is an equivalence relation. 

 


