
Discrete Random Variables and the Binomial Distribution 

 
Consider a dice with the following information: 

 

X = Output 1 with the probability of 1/2 

 

X = Output 2 with the probability of 1/3  

 

X = Output 3 with the probability of 1/6 

 

Hence, E(X) = ∑ x.P(x) 

           x є X 

 

 E(X) = 1.(1/2) + 2.(1/3) + 3(1/6) = 1 + 2/3 = 5/3 

 

Thus, any variable that has probabilities of equaling different values is a discrete random 

variable. We calculate the average or expected value of that discrete random variable 

using the formula above. As an exercise, let Y be the discrete random variable equal to 

the sum of the faces after rolling two standard six-sided dice. Show that E(Y) = 7. 

 

In addition to expectation, we define a term called variance for discrete random variables. 

(This calculation is rarely made in computer science for algorithm analysis, but I am 

including it for completeness sake with respect to the topic of discrete random variables.) 

Variance is simply a definition which roughly gauges, "how spread out" the distribution 

of the discrete random variable is. Here is the formula: 
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For our example above, we have  
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Also, the standard deviation of a discrete random variable is simply defined as the square 

root of its variance. An alternate way to calculate variance is as follows: 
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We define E(X2) as follows: 
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In the text, a proof is given for the result for the alternate calculation of variance. This is 

Theorem 3.12. 

 

 



Binomial Probability Distribution  

 

If we run n trials, where the probability of success for each single trial is p, what is the 

probability of exactly k successes? 
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k slots where prob. success is p , n-k slots where prob. failure is  1 p  

 

Thus, the probability of obtaining a specific configuration as denoted above is pk(1-p)n-k. 

From here, we must ask ourselves, how many configurations lead to exactly k successes. 

The answer to this question is simply, "the number of ways to choose k slots out of the n 

slots above. This is 
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This leads to the following answer to the given question: 
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We can also define a discrete random variable based on a binomial distribution. We can 

simply allow the variable to equal the number of successes of running a binomial trial n 

times. We then separately calculate the probability of obtaining 0 successes, 1 success, 

etc. , n successes. Here is a concrete example with n = 3 and p = 1/3: 

 

X = 0, with probability 
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X = 1, with probability 
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X = 2, with probability 
27

6
)

3

2
()

3

1
(

2

3
12 








 

X = 3, with probability 
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We can calculate that E(X) = 1)
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Why can we leave at the term when X = 0? Also, why is this value in tune with our 

intuitive idea of what we should expect? We can formally prove this intuitive notion, 

namely that for a binomial distribution X, E(X) = np. The proof is Theorem 3.11 in the 

text. 


