
Probability Notes 
 

The Let’s Make a Deal Problem is as follows: 

 

There is a car behind one of three doors, A, B or C, and a goat 

behind the other two. A contestant picks one of the three doors. 

The host then reveals one of the other two doors and shows a 

goat. The contestant is then given a chance to “stay” or 

“switch” doors. The question is, what is the probability of the 

contestant winning if they stay? Also, what is the probability if 

they switch? 

 

Let’s consider the strategy of staying. Your chance of initially 

picking the correct door (with the car) is 1/3. If the strategy is 

staying, then you will only get the car in the cases when you 

picked the door correctly to begin with. Thus, in this case, your 

probability of winning is 1/3. 

 

Let’s now consider the strategy of switching. There is a 2/3 

chance of initially picking the incorrect door. When an 

incorrect door is chosen, the host is forced to choose the other 

incorrect door to reveal. Thus, if you switch, you will get the 

correct door. Thus, the probability of winning when you switch 

is 2/3. (You only lose in this case if you initially pick the correct 

door, which only happens 1/3 of the time.) 

 

This problem illustrates that our intuition about probability is 

often misleading, just as it is about counting. Most people feel 

that your probability of winning “goes up” when you are 

presented with the door revealing the goat. But in fact, this 

only occurs if you switch doors. 

 

 



In general, the probability of an event occurring is the number 

of successes divided by the total number of possible outcomes 

(known as the sample space) – assuming that each outcome is 

equally likely. 

 

For example, given a six-sided die the probability of rolling a 2 

or a 5 is 2/6 because there are six possibilities, of which, two 

are “successes.” 

 

However, when rolling two dice, the probability of rolling a 

sum of 2 is NOT 1/11. (There are 11 outcomes for the sum, 2 

through 12.) This is because each of these possible sums, 2 

through 12, are not equally likely.  

 

The real sample space is the 36 ordered pairs (x,y) where 1 ≤ 

x,y ≤ 6. 

 

(1,1) (1,2) (1,3)  (1,4) (1,5) (1,6) 

(2,1) (2,2) (2,3)  (2,4) (2,5) (2,6) 

(3,1) (3,2) (3,3)  (3,4) (3,5) (3,6) 

(4,1) (4,2) (4,3)  (4,4) (4,5) (4,6) 

(5,1) (5,2) (5,3)  (5,4) (5,5) (5,6) 

(6,1) (6,2) (6,3)  (6,4) (6,5) (6,6) 

 

For example, the probability of rolling a 2 is 1/36, since only 

one of these 36 possibilities adds up to 2. The probability of 

rolling a 3 is 2/36, a 4 is 3/36, etc. (Seven is the most frequent 

value and occurs with probability 1/6.) 

 

This should make sense because after you roll your first die, 

regardless of what you get, there will always be exactly one 

number you can roll on the second one to make the roll sum to 

7. (This is not true of any other value. If you want an 8 but you 

get a 1 first, you are screwed.) 
 



The Florida Lotto 

 
Now, let’s look at another problem, the Florida Lotto. There 

are 52 numbers to choose from (1 through 52). On a ticket you 

pick 6 of the numbers. If all six match, you win. There are also 

prizes for picking 3, 4, or 5 correctly. Let’s calculate the 

probability of picking 3, 4, 5 or 6 of the numbers correctly. 

 

First, let’s determine the sample space. There are 








6

52
 possible 

choices of six numbers out of 52. 

 

Of these choices, there is only 1 that corresponds to picking all 

six numbers correctly. Thus, the probability of winning the 

Florida Lotto is 










6

52

1
. 

 

Now, let’s count the number of ways of picking 5 numbers 

correctly. There are 
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6
 ways to choose 5 correct numbers. 

These are then paired with 1 incorrect number, which can be 

chosen in 
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46
, since there are 46 incorrect numbers to choose 

from. Thus, the total number of ways to choose a combination 

of 5 correct numbers is 
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 and the probability of picking 

exactly 5 numbers correct on a single ticket is 
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In general, for 0 ≤ k ≤ 6, the probability of picking k numbers 

correct is  
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Some Notation 

 
We denote the probability of an event A as p(A), or Pr(A). 

 

The probability of an event A not happening is denoted as 

)(Ap , or p(~A).  

 

It follows that )(Ap  = 1 – p(A). 

 

Furthermore, all probabilities are in between 0 and 1 inclusive, 

and the sum of the probabilities of all possible disjoint events is 

always 1. 

 

If two events A and B are mutually exclusive, then p(A   B) = 

0. Note that   roughly translates to “and.” Furthermore, if 

two events are mutually exclusive, then p(A   B) = p(A)+p(B). 

Note that   roughly translates to “or.” 

 

If two events A and B are independent, then p(A   B) = 

p(A)p(B). Essentially, if two events are independent, that 

means that knowledge of whether or not one of the events 

occurred does NOT affect the probability of the other event 

occurring. For example, the probability that it rains does not 

usually affect the probability that the Magic will win a 

basketball game. (They play indoors!) 



Examples of Mutually Exclusive and Independent 

Events 

 
What’s the probability of picking a red Ace or a Black face 

card when picking one card out of a regular deck of cards? 

 

Let A represent the event of getting a red Ace and B be the 

event of getting a black face card. Events A and B are mutually 

exclusive, meaning that if event A occurs, B can NOT occur.  

 

p(A) = 2/52 because there are two red Aces. 

p(B) = 6/52 because there are six black face cards (if an ace 

counts as a face card, then it would be 8/52) 

 

The probability of either occurring,  p(A   B) = p(A)+p(B) = 

8/52 = 2/13. 

 

You roll a pair of fair six-sided dice and flip a fair coin. What 

is the probability of rolling a sum greater than 7 and getting 

heads. 

 

Let A represent the event of rolling greater than a 7 and let B 

represent the event of flipping heads. 

 

p(A) = 15/36, (obtained by counting the appropriate ordered 

pairs from the previous list) 

p(B) = 1/2, since there are two sides to a coin 

 

p(A   B) = p(A)p(B) = 5/24. 



Inclusion-Exclusion Principle 

 
Although some events are mutually exclusive and others are 

independent, there are pairs of events that are neither. (For 

example, knowing that it is going to rain affects the maximum 

temperature for the day.) The Inclusion-Exclusion Principle is 

valid for all pairs of events: 

 

p(A   B) = p(A)+p(B) - p(A   B) 

 

Intuitively, this says that if you want to determine the 

probability that either event A or event B occurs, you add up 

the probability of each, (but in doing that, you are double 

counting the events that are part of both A and B), so you 

subtract out the probability that  both occur. 

 

Consider the following problem: 

 

What is the probability of picking an Ace or a Heart when 

choosing a single card out of a standard deck of 52 cards? 

 

Let A represent the event of picking an Ace. 

Let B represent the event of picking a Heart. 

 

p(A) = 1/13 (since there are 4 Aces out of 52 cards) 

p(B) = 1/4 (since there are 13 Hearts out of 52 cards) 

p(A   B) = 1/52 (since there is only one Ace of Hearts) 

 

p(A   B) = p(A)+p(B) - p(A   B) 

                 = 1/13 + 1/4 – 1/52 = 4/13 



Conditional Probabilities 

 
As mentioned above, sometimes probabilities change based on 

knowing whether or not some event has occurred.  

 

The notation p(B | A) represents the probability that B occurs 

given that A has occurred. This value may very well be 

different than p(B). In particular, 
)(
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 . 

 

Consider the following situation: 

 

When it does NOT rain, Sue gets to school on time 80% of the 

time. When it does rain, she only gets to school on time 60% of 

the time. 

 

The actual probability she gets to school on time is not either 

60% or 80%, but somewhere in between. But 60% and 80% 

represent the probabilities she gets to school on time given that 

it does NOT rain or that it does rain, respectively. 

 

Let A represent the event it rains and let B represent the event 

that Sue gets to school on time. Thus, p (B | A) = 60% and 

p(B | A  ) = 80%. 

 

If we add the information that it rains 40% of the time, we can 

now calculate the probability that Sue gets to school: 

 

p(B) = p(A)*p(B|A) + p( A )*p(B | A  ) = .4(.6) + .6(.8) = 72% 

 

Intuitively, the probability Sue gets to school on-time can be 

split into two disjoint probabilities: that she gets to school on 

time while it raining, and that she does when it’s NOT raining. 

 



Tree Diagrams and Conditional Probabilities 
 

Problems like this lend themselves well to a tree diagram like 

so: 

 

 

 

 

 

 

 

 

In this diagram, the initial branch is a regular probability 

(without conditional information), but each following branch 

IS a conditional probability since it assumes that the previous 

branches have already “occurred.”  

 

In general, these diagrams are helpful in situations where you 

get a question with some conditional probabilities and some 

absolute probabilities. 

 

Consider the following problem: 

 

There is a disease that occurs in .01% of the population. There 

is a test to see whether or not an individual has the disease. 

Given that an individual HAS the disease, the test correctly 

says so 99% of the time. Given that the individual does NOT 

have the disease, the test is correct 97% of the time. Given that 

an individual has tested positive for the disease, what is the 

ACTUAL probability that he/she has the disease? 

 

 

 

 

 



First make a quick guess as to what the answer is. 

 

Then, carefully work the problem out by drawing a probability 

tree, with the first branch indicating whether or not you have 

the disease, and the second set of branches indicating whether 

or not the TEST indicates that you have the disease. Since this 

is a conditional probability question, you must take the 

probability that you test positive AND have the disease and 

divide that by the probability that you test positive for the 

disease, since that’s the given information. 


