
Fundamental Theorem of Arithmetic 
 

Even though this is one of the most important results in all of Number 

Theory, it is rarely included in most high school syllabi (in the US) 

formally. Interestingly enough, almost everyone has an intuitive 

notion of this result and it is almost always informally covered in 

middle school mathematics classes in the United States. 

 

The Fundamental Theorem of Arithmetic simply states that each 

positive integer has a unique prime factorization. What this means is 

that it is impossible to come up with two distinct multisets of prime 

integers that both multiply to a given positive integer. 

 

To prove this, we must show two things: 

 

1) Each positive integer can be prime factorized. 

2) Each prime factorization is unique. 

 

To see the first fact, let m>1 be the smallest positive integer which 

does NOT have a prime factorization. Since m is not a prime number, 

we can write m as a product of two factors, m1 and m2. But, since both 

of these are smaller than m, they DO have prime factorizations. Thus, 

m can be expressed as the product of these two factorizations, which 

creates a prime factorization contradicting the assumption that m 

does not have one. 

 

 

 

 

 

 

 

 



Before I continue with the second part of this proof, I want to 

introduce pi notation, which is very similar to sigma notation: 
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The only difference between pi notation and sigma notation is that 

each designated term is multiplied instead of added. 

 

Also, I want to prove the two following lemmas: 

 

1) If p is prime and a and b are positive integers and p | ab, then either 

p | a or p | b. 

 

2) If p is prime and ai for 1  i  n, are positive integers, and if  

p | a1a2... an then p | ai for some 1  i  n. 

 

Proof of #1: 

 

If p | a, we are done. Now consider the situation where p does NOT 

divide evenly into a. In this case, we must have that gcd(p, a) = 1. (This 

gcd can not be p, and p has no other possible factors, so the gcd must 

be 1.) Thus, there exist integers x and y such that px + ay = 1. Thus, b 

= b(px+ay). We can rewrite this as b = (bx)p + (ab)y. Since we know 

that p | p and p | ab, it follows that p | b, since b is expressed as a linear  

combination of p and ab. 

 

 

 

 



Proof of #2 

 

Use induction on n. We know the statement is true for n=1 and n=2. 

So, this takes care of the base case. Assume for n=k, we have that  

 

If p is prime and ai for 1  i  k, are positive integers, and if  

p | a1a2... ak then p | ai for some 1  i  k. 

 

Now, we must prove for n= k+1 that 

 

If p is prime and ai for 1  i  k+1, are positive integers, and if  

p | a1a2... ak+1 then p | ai for some 1  i  k+1. 

 

If we have that p | a1a2... ak, then using the inductive hypothesis, we 

can conclude that p | ai for some 1  i  k. 

 

Otherwise, we have that p doesn't divide evenly into a1a2... ak, so we 

then have that gcd(p, a1a2... ak) = 1. 

 

Thus, there exists integers x and y such that 

 

px + a1a2... aky = 1 so, 

 

ak+1(px + a1a2... aky ) = ak+1 

 

(ak+1x)p + (a1a2...ak+1)y = ak+1 

 

Since we have that p | p and that p | (a1a2...ak+1), it follows that p | ak+1 

as desired. 

 

 

 

 



Now, to prove the second part of the Fundamental Theorem of 

arithmetic. Assume to the contrary and let n be the smallest positive 

integer for which there are two disctinct prime factorizations. Thus 

we have the following: 
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Now, let k be the smallest value for which ak > 0. Then we must have 

that pk | n. Since this is the case, and we know that pk  does not divide 

into ANY of the other primes listed thus, it follows that bk > 0. But if 

this is the case, then we can divide both prime factorizations by pk 

which leads to the following: 
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But, we know that the integer n/pk has an unique prime factorization 

since we had assumed that n was the smallest integer without one. 

Thus it follows that the two prime factorizations above are identical. 

If that is the case, then it follows that our two distinct prime 

factorizations for n were not distinct at all. 

 



Here are a couple more classic proofs from Number Theory: 

 

The square root of 2 is irrational. 

 

We will use proof by contradiction here.  

 

Assume that 2 is a rational number. Then we can express 2 as a 

fraction of integers in lowest terms. Let 2 = a/b, where gcd(a,b) = 1. 

(We can do this because if we pick a and b such that their gcd is NOT 

1, we can divde both integers by their gcd.) 

 

2 = a/b 

 

2 = (a/b)2, from squaring both sides. 

2a2 = b2, since 2 is prime, we must have that 2 | b 

 

Let b = 2b': 

 

2a2 = (2b')2 

2a2 = 4b'2 

a2 = 2b'2, once again since 2 is prime, we must have that 2 | a. 

 

But wait, there's a problem with that deduction. If, 2 | a and 2 | b, then 

the gcd(a,b) > 1. This contradicts the given information, so our initial 

assumption, that 2 is a rational number, is incorrect. Thus, 2 must 

be an irrational number. 



Now we will prove that there are an infinite number of prime 

numbers. 

 

Use proof by contradiction: Assume the contrary, that there are a 

finite number of prime numbers. In that case, they can all be listed in 

increasing order. Let this list be: p1, p2, … , pn. 

 

But, consider the number 
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 . None of the listed prime 

numbers divide into it. So, there are only two possible conclusions: 

 

1) The number itself is prime. 

2) The number can be written as a product of multiple numbers that 

are prime. 

 

But either way, the prime numbers we obtain from this number CAN 

NOT be on our original list, which contradicts the fact that our 

original list contained ALL the prime numbers. 

 

As an example, consider the list of prime numbers 2, 3, 5, 7. Now 

consider the number (2)(3)(5)(7) +1 = 211. This number turns out to 

be prime. Even if it didn't, it would have prime factors, but those 

factors could not be any of the numbers on the list. 

 



Least Common Multiple 

 
The least common multiple of two integers is the smallest integer that 

is a multiple of both integers. Consider the following examples: 

 

lcm(12, 18) =36, since 12 | 36, 18 | 36 and 36 is the smallest integer to 

satisfy these constraints. (To see this, notice that the only smaller 

multiple of 18 is 18, which is NOT divisible by 12.) 

 

lcm(15, 35) = 105 and 

lcm(17, 19) = 323 

 

Although there is no common algorithm typically taught similar to 

Euclid's algorithm to find the LCM of two integers, this can also be 

determined via Euclid's algorithm and one fact that we will prove 

about the relationship between the LCM of two integers and the GCD 

of two integers. 

 

Given the prime factorization of two integers a and b, we can 

determine the LCM of the two integers as follows. Let  

 

 


=

=
1i

a

i
ipa

 and 


=

=
1i

b

i
ipb

 

 

Then we have that the lcm(a,b) is 
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To prove this is we need to verify two things: 

 



1) That the value above is a common multiple 

2) That it is the smallest possible common multiple.' 

 

Clearly it is a common multiple because each prime number appears 

in the number above at least as many times as it does in either a or b. 

 

But, we can also show that no smaller number is possible because the 

minimum number of times a particular prime number must appear 

in the prime factorization of the lcm of a and b is precisely the 

maximum of the number of times it appears in either. The reasoning 

is as follows: 

 

If a | b and b | c then a | c. 

 

We know that a is divisible by pk, and we are know that lcm(a,b) is 

divisible by a. Thus it follows that pk | lcm(a,b). 

 

This reasoning holds for each prime, this we can see that the value 

above is a divisor of any multiple of a and b, proving its minimality. 

 

Using similar reasoning, we can show that the gcd(a,b) can be 

expressed as: 
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Now, with these two results, we can show the following: 

 

ab = gcd(a,b)*lcm(a,b). 

 

To see this, simply compute the product on the right: 

 

gcd(a,b)*lcm(a,b) = 
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As an exercise, use this result to compute the LCM(45, 120). 

 

  



Number of Divisors of an Integer 

 

Using the Fundamental Theorem or arithmetic, every positive integer 

n can be expressed as follows: 

 

𝒏 = ∏ 𝒑𝒊
𝒂𝒊

𝒑𝒊∈𝑷𝒓𝒊𝒎𝒆𝒔

 

 

Notice that an arbitrary divisor, d, of n must have the form: 

 

𝒅 = ∏ 𝒑𝒊
𝒅𝒊

𝒑𝒊∈𝑷𝒓𝒊𝒎𝒆𝒔

 

 

where, for all i, 0 ≤di ≤ ai. This means, that for each di, we have 

precisely ai+1 choices for what it could be: 0, 1, 2, 3, …, ai. 

 

It follows that 𝝉(𝒏), the sum of divisors of n, can be expressed as 

follows: 

𝝉(𝒏) = ∏ (𝒂𝒊 + 𝟏)

𝒑𝒊∈𝑷𝒓𝒊𝒎𝒆𝒔

 

 

Let's consider a simple example, n = 23 x 34. All divisors of n take 

the form 2a3b with 0 ≤ a ≤ 3 and 0 ≤ b ≤ 4. We can make a table of 

these divisors as follows: 

 

a/b 0 1 2 3 4 

0 2030 2031 2032 2033 2034 

1 2130 2131 2132 2133 2134 

2 2230 2231 2232 2233 2234 

3 2330 2331 2332 2333 2334 

 

This n = 8 x 81 = 648 has (3 + 1)(4 + 1) = 4 x 5 = 20 divisors. 

 



Parity of the Number of Divisors 

 

If we example the formula for the number of divisors of an integer n: 

∏ (𝒂𝒊 + 𝟏)𝒑𝒊∈𝑷𝒓𝒊𝒎𝒆𝒔 , we see that this product is odd if and only if each 

of the ai's is even. Namely, if each of the ai's is even, the number n is 

a perfect square. This means that all positive integers that are perfect 

squares have an odd number of divisors, and all other integers have 

an even number of divisors. 

 

We can also see this fact by attempting to pair of divisors of an 

integer. 

 

Let's consider a couple example cases n = 36 and n = 48 

 

36 = 1 x 36    48 = 1 x 48 

     = 2 x 18         = 2 x 24  

     = 3 x 12         = 3 x 16 

     = 4 x 9          = 4 x 12 

     = 6 x 6          = 6 x 8 

 

In both cases, we see that we generate divisors in pairs, d and n/d. 

Thus, the number of divisors will be even, UNLESS, in that last pair, 

d = n/d. Of course, this occurs if and only if n = d2 for a positive integer 

d, which means that n is a perfect square! 

 

  



A consequence of this observation, that divisors of an integer come in 

pairs is that if an integer, n, is composite (not prime and greater than 

1), then it must have a divisor greater than 1 and less than or equal to 

the square root of n. We can prove this fact as follows, via 

contradiction: 

 

Assume to the contrary that some integer n is composite, but has no 

integer divisor less than or equal to √𝒏. Since n is composite, there 

exist two integers (neither equal to 1 or n), a and b, such that 

 

𝒏 = 𝒂𝒃 > √𝒏√𝒏 = 𝒏 

 

Clearly, n being greater than n is a contradiction. It follows that our 

assumption is incorrect and that n must have at least one divisor less 

than or equal to its square root. 

 

In the previous example, intuitively, when we list pairs of divisors, 

one is less than or equal to the square root and the other one is greater 

than or equation to the square root. 

 

 

  



Primality Test 

 

This means, that if we want to test to see if an integer is prime or not, 

we just need to try to divide it by primes (if we happen to know these 

already) until the square root of the number. If none divide in evenly, 

then the number is prime. Consider determining if 239 is prime: 

 
239 is not divisible by 2 (remainder 1) 

239 is not divisible by 3 (remainder 2) 

239 is not divisible by 5 (remainder 4) 

239 is not divisible by 7 (remainder 1) 

239 is not divisible by 11 (remainder 8) 

239 is not divisible by 13 (remainder 5) 

 

We can stop because the next prime, 17 is greater than the square 

root of 239. 

 
If we want to generate all of the primes up to a given integer n, we can run the 

Sieve of Eratosthenes. We write down all the integers from 1 to n. Then we go 

to 2, circle it (it's prime), then cross off all of its multiples greater than 2 (all 

other evens). Then, we go to the next uncrossed number (3), and circle it. 

Followed by crossing off all of its multiples. We continue in this fashion circling 

each future uncrossed number, followed by crossing off its larger multiples. 

 
 



Sum of Divisors of an Integer 

 

Continue using the notation as before, and let's build off of the 

previous example, n = 23 x 34. Let's look at the table of divisors: 

 

a/b 0 1 2 3 4 

0 2030 2031 2032 2033 2034 

1 2130 2131 2132 2133 2134 

2 2230 2231 2232 2233 2234 

3 2330 2331 2332 2333 2334 

 

Now, let's consider adding these divisors (in the center of the table). 

 

Notice that for each row, we can factor out a term of the form 2i. So, 

the sum of the first row is: 

 

20(30 + 31 + 32 + 33 + 34) 

 

Similarly, the sums of the second, third and fourth rows are: 

 

21(30 + 31 + 32 + 33 + 34) 

22(30 + 31 + 32 + 33 + 34) 

23(30 + 31 + 32 + 33 + 34) 

 

When we go to add each of these sums, we can factor out 

 

(30 + 31 + 32 + 33 + 34) 

 

yielding the expression: 

 

(20 + 21 + 22 + 23)(30 + 31 + 32 + 33 + 34) 

 

Both of these are geometric sums, thus we can express this product 

more succinctly as: 

 



(𝟐𝟒 − 𝟏)

(𝟐 − 𝟏)
×
(𝟑𝟓 − 𝟏)

(𝟑 − 𝟏)
 

 

In general, even if we have more than two distinct prime factors, we 

can list the sum of each possible divisor as the product of sums, 

where each sum is each unique prime factor raised to each power 

from 0 through ai, where 𝒑𝒊
𝒂𝒊, is the term for prime pi in the prime 

factorization of the integer. 

 

It follows that, if  

𝒏 = ∏ 𝒑𝒊
𝒂𝒊

𝒑𝒊∈𝑷𝒓𝒊𝒎𝒆𝒔

 

 

then 𝝈(𝒏), the sum of divisors of n is: 

 

𝝈(𝒏) = ∏
(𝒑𝒊

𝒂𝒊+𝟏 − 𝟏)

(𝒑𝒊 − 𝟏)
𝒑𝒊∈𝑷𝒓𝒊𝒎𝒆𝒔

 

 

 
  



Number of times a prime p divides evenly into n! 

 

Let's try to figure this out for a specific example: How many times 

does the prime number 2 divide evenly into 12! 

 

n = 12, p = 2 

 

n! = 12! = 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 x 11 x 12 

 

Imagine crossing off each number that has a factor of 2. These show 

up every other integer. 

 

 

1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 x 11 x 12 

      1          2          3          4           5              6 

 

So far we've divided 2 into 12! 6 times. This is 12/2 using integer 

division. 

 

When we did this, we generated new integers that were 1 through 6 

which might have new factors of 2. All the numbers we didn't cross 

off will never generate a factor of 2: 

 

1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 x 11 x 12 

      1          2          3          4           5              6 

          1                      2                           3 

 

Now I've divided out an addition 3 copies of 2. This is 6/2 using 

integer division. 

 

1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 x 11 x 12 

      1          2          3          4           5              6 

          1                      2                           3 

          1 

 



So, we have now canceled 1 additional copy 2, for a total of 6 + 3 + 1 

= 10. 

 

2 | 12 

2 | 6    6 + 3 + 1 

2 | 3 

2 | 1 

     0 

 

So, essentially, we continue this process, crossing off new multiples 

that might be leftover after a round of cross offs. After each round, 

the new integers that remain are a smaller range [1..n/p] as 

compared to [1..n] from the previous round. We continue rounds 

until our range shrinks to be less than p. 

 

Formally, the following formula is the number of times the prime 

number p divides evenly into n!: 
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Is the number of times a prime number p divides evenly into n! 

 

By hand I did 12/2 + 6/2 + 3/2 (int div) 

The formula does 12/2 + 12/4 + 12/8 (int div) 

These are equivalent. 

 

To answer the question: how many zeroes are at the end of n!, notice 

that we need to answer the number of times 2 divides evenly into n! 

and the number of times 5 divides evenly into n! Whichever is 

smaller (the latter one) is the answer to the question, how many 0s 

are at the end of n! Let's try one quick example: 

 

 



How many 0s are at the end of 800 factorial? 

 

This is the same as the answer to the question, how many times does 

5 divide evenly into 800! 

 

5 | 800 

5 | 160 

5 |   32 

5 |     6 

         1 

 

Answer = 160 + 32 + 6 + 1 = 199 

 


