
Basics of Number Theory 

 
I have used the divisibility definition several times. Here I will present it 

again, as we delve more deeply into its uses. We will say that an integer 

a divides an integer b evenly without a remainder, like this: a | b. This 

implies that there exists an integer c such that b = ac. We will only 

define division by non-zero integers. Hence, it is not permissible to write 

0 | a. 

 

Here are some rules that division of integers follow. (Note, a, b and c are 

always non-zero integers.) 

 

1) 1 | a 

2) a | 0 

3) if a | b, and b | c, then a | c. 

4) if a | b and b | a, then a = +b or a = -b 

5) if x = y + z, and we have a | y and a | z, then a | x as well. 

6) if a | b and a | c, then we have a | bx + cy for all ints x and y. 

 

 
Examples of how we can use these rules is as follows: 

 

Problem #1 

Are there any integer solutions to the equation 5x + 10y = 132? 

 

The answer is no. We know that 5 must divide 5x and it must also divide 

10y, thus 5 | (5x+10y). (Rule 6) We can see this clearly by factoring the 

expression as 5(x+2y). But we know that 5 | 132 is false, thus, there is no 

solution. One more way we can see this is by the following: 

 

5(x+2y) = 132 

x+2y = 132/5, since x and y are ints, x+2y is, but 132/5 is not, and since 

the integers are closed over addition, there are no integer solutions that 

satisfy the equation. 

 

 

 

 



Problem #2 

If x and y are integers such that 13 | (3x+4y), prove that  13 | (7x+5y). 

Note that we can rewrite 7x+5y as 13x + 13y – 2(3x+4y). So we have: 

 

7x + 5y = 13(x+y) – 2(3x + 4y) 

 

Let A = x+y, B=3x+4y 

 

We have 7x+5y = 13A – 2B.  

 

Since 13 | B, we can express B=13B’, where B’ is an integer.  

 

Thus we have 

 

7x+5y = 13A – 2B = 13A – 2(13B’) = 13A – 26B’ = 13(A – 2B’) 

By definition of divisibility, we have 13 | (7x+5). 

 

Notice that we came up with the original expression "out of the blue." 

One way to do this is trial and error, playing around with different 

multiples of 13x and 13y and adding or subtracting different multiples 

of 3x+4y until you obtain 7x+5y. It turns out that there is a systematic 

way to obtain an appropriate expression and this will be covered in a 

future lecture. 
     



The Division Algorithm 

 
This is simply a symbolic representation of what you’ve known since 

grade school. If you divide one number by another, the remainder is 

always in between 0 and that number-1. Here it is: 

 

If a, b Z, with b > 0, then there exists unique q, rZ such that 

 

a = qb + r, 0  r < b. 

 
So, this just says when you divide a by b, you get a quotient of q, with a 

remainder of r in between 0 and b-1, such that both q and r are 

integers, and there is exactly one ordered pair (q, r) that satisfies these 

requirements. 

 

First we prove that at least one solution to the given equation with the 

restrictions on q and r exist. 

 

We can prove this by contradiction. Let’s assume that no such q and r 

exist. We know that without the restriction 0  r < b, we can find q=0 

and r=a that will work. If a < b, we have shown there is at least one 

solution. Thus, we assume a > b. 

 

Let's assume that the smallest r0 for which a = qb + r is greater than 

or equal to than b. Let this r = b + r’, where r’ ≥ 0. So, we have: 

 

a = qb + r 

   = qb + b + r – b, now let r’=r – b. 

   = (q+1)b + r’ 

 

Thus, we have found new integers q’= q+1 and r’=r-b such that 

a = q’b + r’, where 0  r’ < r. But, that contradicts our assumption that 

r was the smallest integer greater than or equal to 0 that satisfied the 

requirement. Thus, we must have at least one solution of 

 

a = qb + r such that q, rZ  0  r < b. 

 

Now, we must show that there are no other pairs (q,r) that satisfy this 

equation. Let’s use proof by contradiction again. 



 

Assume there are two distinct pairs of integers (q,r) and (q’,r’) such that 

 

a = qb + r = q’b + r’, with 0  r,r’ < b. 

 

Then, we have: 

 

qb – q’b = r’ – r 

b(q – q’) = r’ – r 

 

Either q – q’  0 or r’ – r  0. 

 

If q – q’  0, then we have | b(q – q’)|  b, but we know that  

|r’ – r| < b, since 0  r,r’ < b. Thus, this case is impossible. 

 

Otherwise, we must have r’ – r  0. But, this too is impossible since we 

have 0 < |r’ – r| < b, and we know that this can NOT be a multiple of b 

like b(q – q’) is. 

 

Thus, we have contradicted our assumption that either q – q’  0 or r’ – 

r  0, proving that q and r are unique. 

 

Application of Division Algorithm: Base Conversion 

 
Our regular counting system is the decimal (base 10) system. This is 

because we use 10 distinct digits, zero through nine. In general, the 

numerical value of a number is what you were taught in elementary 

school. For example, 

 

2713 = 2 x 103 + 7 x 102 + 1 x 101 + 3 x 100 

 

Each digit’s value is determined by which place it’s in. Each place is a 

perfect power of the base, with the least significant at the end, counting 

up by one as you go through the number from right to left. 

 

Although this seems to be the only possible number system, it turns out 

that the number of digits used is arbitrary. We could have just as easily 

chose to use 5 digits (0 – 4), in which case the value of a number would 

be as follows: 



 

3145 = 3 x 52 + 1 x 51 + 4 x 50 = 8410. 

 

Thus, this is how we convert from a different base to base 10. (Note that 

we write a subscript by the number to denote its base.) In general, we 

can write our conversion as follows: 

 

dn-1dn-2…d2d1d0 (in base b) = dn-1xbn-1 + dn-2xbn-2 + … + d2xb2 + d1xb + d0 

 

(Note, b raised to the 1 and 0 powers were simplified above.) 

 

Let’s look at a couple quick examples: 

 

7819 = 7x92 + 8x91 + 1x90 = 64010 

 

11101012 = 1x26 + 1x25 + 1x24 + 0x23 + 1x22 + 0x21 + 1x20 = 11710 

 

(Note: Base 2 is so common, it has a name: binary.) 

 

Now, let's consider the opposite problem: taking a number, X, in base 

10 and converting it to base b: 

 

Our number's value in base ten can be expressed as: 

 

X = dn-1xbn-1 + dn-2xbn-2 + … + d2xb2 + d1xb + d0  

 

    = b(dn-1xbn-2 + dn-2xbn-3 + … + d2xb1 + d1xb0) + d0 

 

We factored out b from all the terms except for the last. We can think of 

X as the number we are dividing into and b as the number we are 

dividing by. Viewing this equation in this fashion, then the 

corresponding quotient and remainder are: 

 

Quotient = (dn-1xbn-2 + dn-2xbn-3 + … + d2xb1 + d1xb0) 

Remainder = d0 

 

What this indicates immediately is that if we want to convert a number 

from base 10 to another base b, we can reveal the least significant 

"digit" of the answer via the division algorithm. 

 



If we glance more carefully at these two results, we can see that the 

expression for the quotient is essentially the base 10 value of "the rest of 

the number" except for the last digit. Thus, if we want to complete our 

base conversion task, we can just divide this new quotient by b and that 

will reveal d1. If we repeatedly divide the new quotient from each 

subsequent division by b, we'll reveal each digit of the number 

converted to base b, in reverse order. 

 

Here are some examples: 

 

Problem 3: Base Conversion Example 

Convert 117 in base 10 to base 2 (binary) 

 

117 = 58 x 2 + 1,   1 (d0) 

58   = 29 x 2 + 0, 0 (d1)   

29   = 14 x 2 + 1, 1 (d2)  

14   =   7 x 2 + 0, 0 (d3)  

7     =   3 x 2 + 1, 1 (d4)  

3     =   1 x 2 + 1, 1 (d5)  

1     =   0 x 2 + 1, 1 (d6), since the quotient is 0, we can stop. 

 

To get the result, read the remainders in reverse order: 11710 = 11101012 

 

Here is a more typical way to write this out: 

 

2 | 117 

2 |   58 R 1 (result of first division, q = 58, r = 1) 

2 |   29 R 0 (result of second division, q = 29, r = 0) 

2 |   14 R 1 

2 |     7 R 0 

2 |     3 R 1 

2 |     1 R 1 

         0 R 1 

 

We still read the remainders in reverse order to get the result. 

 

If a base is bigger than 10, we start using the letters, so a = 10, b = 11, 

etc. The most typical base bigger than 10 used in computer science is 

base 16, which is also known as hexadecimal. 

 



Problem 4: Base Conversion Example 

Convert 1327 in base 10 to hexadecimal 

 

16 | 1327 

16 |     82 R 15 (F) 

16 |       5      R 2 

             0     R 5 

 

Thus 132710 = 52F16 

 

Problem 5: Base Conversion Example 

Convert 693 in base 10 to base 5 

 

5 | 693 

5 | 138 R 3 

5 |   27      R 3 

5 |     5 R 2 

5 |     1          R 0 

         0     R 1 

 

Thus 69310 = 102335 

 



mod relation (in mathematics) 

 
In math, modulo (mod) is used to define a relationship between integers 

related to divisibility. Specifically, here is the definition of mod, for 

integers a, b and positive integer n: 

 

a  b (mod n) iff n | (a-b),  

 

Equivalently, we can also say that there exists some integer q such that 

 

nq = a – b, which also means that 

a = b + nq 

 

Here are some true mod relations: 

 

7  3 (mod 4) 

7  99 (mod 4) 

13  -7 (mod 10) 

 

In particular with the division algorithm, based on the division 

algorithm, dividing a by b, it's always true that 

 

a  r (mod b). 

 

More generally, 

 

For all integers m, a  (r+bm) (mod b). Notice that we can take any mod 

statement and add or subtract any multiple of the mod value from a 

value on one side without affecting the truth of the statement. 

 

Here are a list of rules using mod, where a, b and c are integers and n 

and k are positive integers: 

 

if a  b (mod n)  (a+c)  (b+c) (mod n) 

if a  b (mod n)  ac  bc (mod n) 

if a  b (mod n)  ak   bk  (mod n) 

if a  b (mod n)  f(a)  f(b) (mod n) for any polynomial f(x)  

        with integer coefficients. 

 



if a  b (mod n)  b  c (mod n)  a  c (mod n) 

 

if a  b (mod n)  c  d (mod n)  a + c  b + d (mod n) 

 

if a  b (mod n)  c  d (mod n)  ac  bd (mod n) 

 

These can all be rigorously proved. Let's just take a quick look and 

prove the following statement which is a specific case of the exponent 

rule with k = 2: 

 

Problem 6: Mod Proof from First Principles 

Prove the following for all integers a and b, and positive integers n:  

 

if a  b (mod n)  a2   b2  (mod n) 

 

Proof #1 

By definition of mod, we must prove that n | (a2 – b2). We may assume 

that n | (a – b).  

 

Therefore, there exists some integer c such that a – b = cn. 

 

a2 – b2 = (a – b)(a + b) = n(c(a + b)), since c, a and b are integers, it 

follows that c(a + b) is as well. Thus, we've proved that n | (a2 – b2) as 

desired. 

 

Proof #2 

We may assume that n | (a – b). Therefore, there exists some integer c 

such that a – b = cn. Solving for a we get a = b + cn. We still aim to 

prove that n | (a2 – b2). 

 

a2 – b2 = (b + cn)2 – b2 = b2 + 2bcn + c2n2 – b2 = n(2bc +c2n) 

 

Since b, c and n are all integers, it follows that 2bc + c2n is an integer as 

well. Thus, we've proven that n | (a2 – b2) 

 

It's important to see that these can be proved from first principles. 

Mostly, moving forward though, we'll use all of these rules to help us 

solve problems. 

 



Mod Proofs  

We can use mod to prove some interesting results. Here are two 

examples: 

 

Problem 7: Squares of Odd Integers 

If n is an odd integer, prove that n2  1 (mod 8). 

 

In order to prove this statement, it helps to prove a little lemma: 

 

If n is an integer, then n(n+1) is an even integer. We can prove this as 

follows: 

 

n must be even or odd. Let's prove that the given expression is even in 

both cases. If n is even, there exists an integer c such that n = 2c. Then, 

 

n(n+1) = 2c(2c + 1), since c is an integer so is c(2c+1). It follows that 

n(n+1) is even since we have rewritten it as 2 times an integer. 

 

If n is odd, there exists an integer c such that n = 2c + 1. Then, 

 

n(n+1) = (2c + 1)(2c + 1 + 1) = 2(2c+1)(c+1), since c is an integer, 

(2c+1)(c+1) is also an integer, and n(n+1) is also even in this case. 

 

Now to prove the given assertion. Since n is odd, there exists an integer 

a such that n = 2a + 1. 

 

n2 = (2a + 1)2 = 4a2 + 4a + 1 = 4a(a+1) + 1  4(2c) + 1  8c + 1  1 (mod 8) 

 

Problem 8: Squares mod 3 

Prove the following: For all integers a, if a  2 (mod 3), then a2   1 (mod 

3). 

 

By definition of mod, there exists an integer c such that a = 3c + 2. Thus. 

 

a2 = (3c + 2)2 = 9c2 + 12c + 4  0 + 0 + 4  1 (mod 3). The key here is that 

each of the first two terms has a factor of 3, so these reduce to 0 (mod 3). 

 

 

 



 

Application of mod: Fast Modular Exponentiation 
 

It turns out that computing the remainder when a large integer is raised 

to another large integer and divided by a third large integer is 

extremely useful in public key cryptography. (Both RSA and El Gamal 

use this calculation, among other public key schemes.) 

 

We can solve these computations quickly either by hand (for smaller 

cases) or computer (larger cases) by using an algorithm called fast 

modular exponentiation. In code, usually a top down approach is used, 

but for computing by hand, a bottom-up approach is typically easier. 

Only the latter is included in these notes for computation by hand. In 

general, there are many quick ways by hand to calculate small modular 

exponents. As long as you understand the mod rules, you can use an "ad 

hoc" system which just makes sure that you adhere to the mod rules, 

but does different calculations at different junctures without any 

necessary pattern per se. Some students prefer a "system", which would 

be necessary in a computer program, where the same steps are always 

executed, following struct rules. 

 

Fast Modular Exponentiation: Bottom Up Algorithm 

Notice that using the mod rules, if we know that ak  b (mod n), then we 

can fairly quickly calculate that a2k  (ak)(ak)  b x b  b2 (mod n). We 

can specifically make sure that the value of b we use in the calculation is 

such that |b| < n. (So sometimes we can use the positive value, other 

times the negative value, depending on what is closer to 0.) 

 

Thus, in a single step, we can double our exponent. This means that for 

any base, a, and mod value, n, we can calculate the remainders when a1, 

a2, a4, a8, a16, etc. are divided by n in succession. 

 

Then, we can use these results to build an answer for a raised to any 

exponent because every exponent can be represented as a sum of powers 

of two (binary representation), and then we can just multiply the 

appropriate terms. 

 

This is easiest to see with an example. 

 



 

Problem 9: Fast Modular Exponentiation Calculation 

What is the remainder when 225 is divided by 33? 

 

First, let's build our chart of remainders up to 216: 

 

Exp 1 2 4 8 16 

2exp %33 2 4 16 25 31 

 

28 = 16 x 16 = 256  25 (mod 33) 

216  28 x 28  25 x 25  (-8)x(-8)  64  31 (mod 33) 

 

The explanation for the last two entries is above. 

 

Now, we must express 225 as a product of the terms above. Let's convert 

the exponent 25 to binary: 

 

2 | 25 

2 | 12  R 1 

2 |   6  R 0 

2 |   3  R 0 

2 |   1  R 1 

       0  R 1, thus 2510 = 11001, which means that 16 + 8 + 1 = 25 

 

225  2162821  (31)(25)(2)  (-2)(-8)(2)  32 (mod 33). 

 

It follows that the remainder when 225 is divided by 33 is 32. 

 

Problem 10: Modular Exponentiation Simple Base Simplification 

What is the remainder when 97123 is divided by 32? 

 

Note that 97  1 (mod 32). It follows that: 

 

97123  1123  1 (mod 32) 

 

It always makes sense to do the base simplification first before using the 

actual fast modular exponentiation algorithm. In a special case like this 

one, it's not necessary, since we know what 1 raised to any power is. 

 



 

Modular Exponentiation – Cycle Method 

Since there are only so many possible remainders when dividing by n, 

we are guaranteed that the modular exponentiation calculation 

"cycles". In particular, if ak  1 (mod n), particularly for small k, then 

we can calculate some results to very high exponents very quickly, since 

we know that the modular exponentiation chart will repeat over and 

over again. (Similar to if I asked the problem: Melina writes the 

numbers 1, 6, 3, 7, 2 over and over again. What will be the 2023rd 

number that she writes? Since she repeats every 5 numbers, we know 

that the 2021st number will be 1 (since the first 2020 numbers will be the 

cycle above repeated 404 times), the 2022nd number will be 6 and the 

2023rd number will be 3.) 

 

Here, the algorithm is to calculate the remainders when a0, a1, a2, a3, a4, 

… are divided by n until we hit the remainder of 1 again (this was the 

very first remainder). Then the chart can be used to calculate the 

remainder when a is raised to any power. 

 

Problem 11: Modular Exponentiation Cycle Method 

What’s the remainder when 742023 is divided by 11? 

 
 

Exp 0 1 2 3 4 5 6 7 8 9 10 

(-3)exp 1 -3 9 6 4 -1 3 2 -6 7 1 

 

To calculate each subsequent entry in the chart, multiply each previous 

entry by -3 and reduce the answer mod 11. Here are a few of the 

calculations in detail: 

 

33 = 32 x (-3) = 9 x (-3)  -27  6 (mod 11) 

34 = 33 x 3 = 6 x (-3)  -18  4 (mod 11) 

35 = 33 x 3 = 4 x (-3)  -12  -1 (mod 11) 

 

Since 310  1 (mod 11), then 310c  1 (mod 11), for any integer c. 

 

 
It follows that the remainder when 742023 is divided by 11 is 6. 


