Basics of Number Theory

I have used the divisibility definition several times. Here I will present it again, as we delve more deeply into its uses. We will say that an integer a divides an integer b evenly without a remainder, like this: a | b. This implies that there exists an integer c such that b = ac. We will only define division by non-zero integers. Hence, it is not permissible to write 0 | a.

Here are some rules that division of integers follow. (Note, a, b and c are always non-zero integers.)

1) 1 | a

2) a | 0

3) if a | b, and b | c, then a | c.

4) if a | b and b | a, then a = +b or a = -b

5) if x = y + z, and we have a | y and a | z, then a | x as well.

6) if a | b and a | c, then we have a | bx + cy for all ints x and y.

An example of how we can use these rules is as follows.

Are there any integer solutions to the equation

5x + 10y = 132?

The answer is no. We know that 5 must divide 5x and it must also divide 10y, thus 5 | (5x+10y). We can see this clearly by factoring the expression as 5(x+2y). But we know that 5 | 132 is false, thus, there is no solution. One more way we can see this is by the following:

5(x+2y) = 132

x+2y = 132/5, since x and y are ints, x+2y is, but 132/5 is not, so there are no integer solutions that satisfy the equation.

Here is another example of how to use these rules:

Prove that if 13 divides 3x+4y, that 13 also divides 7x+5y. We can rewrite 7x+5y as 13x + 13y – 2(3x+4y). So we have:

7x + 5y = 13(x+y) – 2(3x + 4y)

Let A = x+y, B=3x+4y

We have 7x+5y = 13A – 2B. 

Since 13 | B, we can express B=13B’, where B’ is an integer. Thus we have

7x+5y = 13A – 2B = 13A – 2(13B’) = 13A – 26B’ = 13(A – 2B’)

By definition of divisibility, we have 13 | (7x+5y).
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Now, I will show that there are an infinite number of primes. For now I will assume that all numbers can be prime factorized. We will prove this by contradiction.

Assume that there are a finite number of primes. Thus, we can list each of these out p1, p2, ... and , pn. Now, consider the number:

(p1* p2* p3 * ... * pn) + 1.

We know that none of p1, p2, ... and , pn can be factors of the number. (Why?)

Thus, that means one of two things. Either the number we have is prime itself. Or, it has a prime factor that is not in our original list p1, p2, ... through , pn. Either way, we contradict our initial assumption that p1, p2, ... through , pn are the only prime numbers. Thus, there are an infinite number of primes.

Here's an induction problem involving divisibility: 

Prove that 5 | 32n + 4n+1, for all non-negative integers n.

We will prove the formula using induction on n.

1) Base Case n=0. This statement is true for n=0 since 

32*0 + 40+1 = 1 + 4 = 5, and we know that 5 | 5.

2) Assume that the formula is true. Hence, assume that 5 | 32k + 4k+1, for an arbitrary non-negative integer n=k.

3) Now we must show that the formula is true for n=k+1. That is, we must show that 5 | 32(k+1) + 4(k+1)+1, using our assumption from step 2.

Consider the quantity 32(k+1) + 4(k+1)+1. We must show that it is equal to 5 times some integer.

32(k+1) + 4(k+1)+1 = 9*32k + 4*4k+1



   = 5*32k +4*32k + 4*4k+1



   = 5*32k +4(32k + 4k+1)

Now, since we have assumed that that 5 | 32k + 4k+1, then we can express 32k + 4k+1 = 5d, for some integer d. So now we have:




   = 5*32k +4(5*d) , 
using the inductive hyp.




   = 5(32k + 4d)

But, we know that 5 | 5(32k + 4d). Thus, we have proven s(k+1) assuming s(k), completing the inductive proof. 

Hence we can conclude that 5 | 32n + 4n+1, for all non-negative integers n.
The Division Algorithm

This is simply a symbolic representation of what you’ve known since grade school. If you divide one number by another, the remainder is always in between 0 and that number-1. Here it is:

If a, b (Z, with b > 0, then there exists unique q, r(Z such that

a = qb + r, 0 ( r < b.

So, this just says when you divide a by b, you get a quotient of q, with a remainder of r in between 0 and b-1, such that both q and r are integers.

We can prove this by contradiction. Let’s assume that no such q and r exist. We know that without the restriction 0 ( r < b, we can find q=0 and r=a that will work. Thus, for this we will assume that the smallest r(0 for which a = qb + r is greater than or equal to than b. Let this r = b + r’, where r’>0. So, we have:

a = qb + r

   = qb + b + r – b, now let r’=r – b.

   = (q+1)b + r’

Thus, we have found new integers q’= q+1 and r’=r-b such that

a = q’b + r’, where 0 ( r’ < r. But, that contradicts our assumption that r was the smallest integer greater than or equal to 0 that satisfied the requirement. Thus, we must have at least one solution of

a = qb + r such that q, r(Z ( 0 ( r < b.

Now, we must show that there are no other pairs (q,r) that satisfy this equation. Let’s use proof by contradiction again.

Assume there are two distinct pairs of integers (q,r) and (q’,r’) such that

a = qb + r = q’b + r’, with 0 ( r,r’ < b.

Then, we have:

qb – q’b = r’ – r

b(q – q’) = r’ – r

Either q – q’ ( 0 or r’ – r ( 0.

If q – q’ ( 0, then we have | b(q – q’)| ( b, but we know that 

|r’ – r| < b, since 0 ( r,r’ < b. Thus, this case is impossible.

Otherwise, we must have r’ – r ( 0. But, this too is impossible since we have 0 < |r’ – r| < b, and we know that this can NOT be a multiple of b like b(q – q’) is.

Thus, we have contradicted our assumption that either q – q’ ( 0 or r’ – r ( 0, proving that q and r are unique.

This relates to the mod operator which I have given you examples of before. Here is the definition of the mod operator:

a ( b (mod c) iff c | (a-b), which can also be written as there exists an integer q such that cq = a – b, or a = cq + b, for some integer q.

In particular with the division algorithm, we always have

a ( r (mod b), using the same variables as before.

Here are a list of rules using mod:

if a ( b (mod n) ( (a+c) ( (b+c) (mod n)

if a ( b (mod n) ( ac ( bc (mod n)

if a ( b (mod n) ( an  ( bn  (mod n)

if a ( b (mod n) ( f(a) ( f(b) (mod n) for any polynomial f(x) 








 with integer coefficients.

if a ( b (mod n) ( b ( c (mod n) ( a ( c (mod n)

if a ( b (mod n) ( c ( d (mod n) ( a + c ( b + d (mod n)

if a ( b (mod n) ( c ( d (mod n) ( ac ( bd (mod n)

We can use these to answer questions such as, what is the remainder when you divide 425 by 10. We have

425 ( (42)12*4 (mod 10)

     (   612*4 (mod 10)

     ( (62)6*4 (mod 10)

     (  66*4 (mod 10)

     ( (62)3*4 (mod 10)

     ( 63*4 (mod 10)

     ( 62*6*4 (mod 10)

     ( 6*6*4 (mod 10)

     ( 6*4 (mod 10)

     ( 4 (mod 10)

Thus, the desired remainder is 4.

We can also use these rules to show that any odd number square leaves a remainder of 1 when divided by 8.

From before, any odd number can be expressed as 2a+1, for some integer a. We have

(2a+1)2 ( 4a2 + 4a + 1 (mod 8)


     (
4a(a+1) + 1 (mod 8)

But, we know if a is even then a+1 is odd, or vice versa. The point is a(a+1) must be even, since one of two consecutive integers must be even. Thus, we can expression a(a+1) as 2b, for some integer b. Now we have:


    (
4*2b + 1 (mod 8)

    (
8b + 1 (mod 8)

    ( 1 (mod 8)

proving the assertion.

Now, here is one problem for you guys:

Prove that all square of all numbers that leave a remainder of 2 when divided by 3 leaves a remainder of 1 when divided by 3. Symbolically, you are trying to show:

a ( 2 (mod 3) ( a2 (  1 (mod 3)

Euclid’s Algorithm

The Greatest Common Divisor(GCD) of two integers is defined as follows:

An integer c is called the GCD(a,b) (read as the greatest common divisor of integers a and b) if the following 2 conditions hold:

1) c | a ( c | b

2) For any common divisor d of a and b, d | c.

Rule 2 ensures that the divisor c is the greatest of all the common divisors of a and b.

One way we could find the GCD of two integers is by trial and error. Another way is that we could prime factorize each integer, and from the prime factorization, see which factors are common between the two integers. However, both of these become very time consuming as soon as the integers are relatively large. 

However, Euclid devised a fairly simple and efficient algorithm to determine the GCD of two integers. The algorithm basically makes use of the division algorithm repeatedly.

Let’s say you are trying to find the GCD(a,b), where a and b are integers with a ( b > 0

Euclid’s algorithm says to write out the following:

a = q1b + r1, 

where 0 < r < b

b = q2r1 + r2,

where 0 < r2 < r1

r1 = q3r2 + r3,

where 0 < r3 < r2

.

.

ri = qi+2ri+1+ ri+2,
where 0 < ri+2 < ri+1

.

.

rk-1 = qk+1rk

Euclid’s algorithm says that the GCD(a,b) = rk
This might make more sense if we look at an example:

Consider computing GCD(125, 87)

125 = 1*87 + 38

87 = 2*38 + 11

38 = 3*11 + 5

11   = 2*5   + 1

5 = 5*1

Thus, we find that GCD(125,87) = 1.

Let’s look at one more quickly, GCD(125, 20)

125 = 6*20 + 5

20 = 4*5,

thus, the GCD(125,20) = 5

