
The Use of Quantifiers 

 
Open Statement: One that contains a variable, and becomes a 

(single) statement when that variable is replaced with a value. 

 

Example of an open statement: 

 

7 divides evenly into x+7. 

 

As you can see, for certain values of x, such as 7 or 21, this 

statement is true, but for other values, it is not true. (Note: It is 

possible for an open statement to always be true, such as “x is 

greater than x-1.”) 

 

We can denote the open statement above as p(x). Thus we can 

say that p(7) is true, whereas p(3) is not. 

 

It is also possible for open statements to contain more than one 

variable. Consider the following: 

 

x is a prime number that divides into y evenly AND is less than 

or equal to y. 

 

We can denote the statement above as q(x,y). So, q(2,18) is true 

while q(5,13) and q(8,24) are both false. 

 

With both of these open statements, we see that there are 

values for which the statements are true. Thus, it is reasonable 

to say something like the following: 

 

For some x, p(x), and 

 

for some x and y, q(x,y). 

 



Quantifier Notation 

 
Similarly, certain open statements can be true for all values of 

the variables involved. If we let r(x) be the statement: “x is 

greater than x-1,” then we can make the claim: 

 

For all x, r(x). 

 

(Of course, whenever we say for all x, we must define what our 

universe, or possible x’s are. Are they all the integers? All the 

real numbers? All the complex numbers? We will talk about 

how to specify that later.) 

 

Since we are dealing with mathematics, we need short symbols 

to replace the English words “for some” and “for all”. (A 

mathematician's whole goal in life is to confuse non-

mathematicians :)) 

 

The symbol for the words “for some,” which is more 

accurately describe as “there exists a value of,” is .  

 

The symbol for the words “for all values of” is 



So, we could make the following claims: 

 

x [p(x)] and xy [q(x)]. 

 

In English, these would be read as: 

 

There exists a value of x for which 7 divides evenly into x+7. 

 

There exists values for x and y for which x is a prime number 

that divides into y evenly AND is less than or equal to y. 

 



As you can see, with just these two quantifiers we can put 

together even more complex statements. Many theorems, 

results, etc. in mathematics are typically represented using 

quantifiers. For example, we know that all positive integers 

have at least one prime factor that is less than or equal to the 

number itself. Mathematically speaking, we can use our 

statement q(x,y) from before to express this result. 

 

q(x,y): x is a prime number that divides into y evenly AND is 

less than or equal to y. 

 

yx [ q(x,y) ] 

 

Literally, this reads: “For all values y, there exists a value for x 

for which x is a prime number that divides into y evenly AND 

is less than or equal to y.” 

 

A very important distinction to make here is the order of the 

quantifiers. The statement 

 

xy [ q(x,y) ] for example is NOT true.  

 

This literally reads: “There exists a value of x for which for all 

values of y, x is a prime number that divides into y evenly AND 

is less than or equal to y.” 

 

The reason this is not true is because no matter what value you 

try to pick for x, you can ALWAYS find a value for y such that 

x DOES NOT divide y. 



Perhaps, some practice evaluating these statements might help. 

Consider these simple open statements: 

 

p(x):  x > 0 

q(x): x2 – 2x – 3 = 0 

r(x): x < 0 

s(x): x2 > 0 

 

Decide whether each of these assertions is true or not: 

 

1) x [p(x)  q(x) ] 

2) x[p(x)  r(x)  s(x)] 

3) x [r(x) q(x)] 

 

 

 

Now, take these assertions (which may not actually be true) 

and put them into symbolic form: 

 

1) For all values of x less than 0, x2 is greater than 0. 

 

2) There exists a value of x for which if x2 – 2x – 3 = 0 then x is 

greater than 0. 

 

3) For all values of x such that x2 – 2x – 3 = 0, x < 0. 



A little chart to keep all of this straight 

(Also on pg. 94 of the book...) 

 

Statement When True When False 
      x p(x) For at least one value 

a in the universe for x, 

p(a) is true. 

For all values a in the 

universe for x, p(a) is 

false. 

x p(x) For all values a in the 

universe for x, p(a) is 

true. 

For at least one value 

a in the universe for x, 

p(a) is false. 
x [p(x)] For at least one value 

a in the universe for x, 

p(a) is false. 

For all values a in the 

universe for x, p(a) is 

true. 
 x [p(x)] For all values a in the 

universe for x, p(a) is 

false. 

For at least one value 

a in the universe for x, 

p(a) is true. 

 



Given a statement x [p(x)  q(x)], here are other related 

statements: 

 

1) Contrapositive: x [q(x)  p(x)] 

2) Converse: x [q(x)  p(x)] 

3) Inverse: x [p(x)  q(x)] 

 

As we have mentioned before, if the given statement is true, 

then the contrapositive MUST BE true. However, neither the 

converse nor the inverse are necessarily true. 

 

However, if both the given statement AND the converse are 

true, we have and if and only if relationship. Similarly, if both 

the given statement and the inverse are true, we also have and 

if and only if relationship. 

 

 

A couple more rules that follow... 

 
So now, consider each of these implications: 

 

1) x [p(x)  q(x)]  [x p(x)  x q(x)] 

 

2) x [p(x)  q(x)]  [x p(x)  x q(x)] 

 

3) x [p(x)  q(x)]  [x p(x)  x q(x)] 

 

4) [x p(x)  x q(x)]  x [p(x)  q(x)] 

 

 

 

 

 



An important observation is that the first and fourth rules only 

go one way. Can you think of some counter examples to these 

rules? 

 

Here are a couple of mine: 

 

For number 1, let statement  

 

p(x) = “x is greater than 100.” 

q(x) = “x is less than 0.” 

 

Certainly, x p(x), also we have x q(x). This is because there 

exists an x greater than 100, namely 101. But there also exists 

an x less than 0, namely –1. 

 

BUT, it is NOT true that x [p(x)  q(x)]. If this were the case, 

then we could find a single value of x for which BOTH p(x) 

AND q(x) hold. But, clearly they are contradictory statements 

and this can not happen. 

 

 

 

A counter example to the converse of rule number 4 is the 

following: 

 

Let 

 

p(x) = “x is an even integer.” 

q(x) = “x is an odd integer.” 

 

Clearly, for all integers x, we have either p(x) or q(x). BUT, it 

is not true that x p(x) and it is also not true that x q(x). The 

reason neither of these is true is because all integers are not 

odd, and all integers are not even either. 

 



Other practice problems 

 

First translate these assertions into English. Then deduce, with 

proof, whether they are valid or not. To show an assertion to 

be invalid, merely present a counter example. To prove it, you 

must show that the statement holds for all the values it says it 

will hold. 

 

1. yx [y = 2x  xZ  yZ ] 

 

2. xy [ y/x < |y|  xZ  yZ ] 

 

3. xy [ x/y = y/x  xZ  yZ ] 
 


