
Fundamentals of Logic 

 
Statements/Propositions – Sentences that are true or false but 

not both. (Just like a simple boolean expression or conditional 

expression in a programming language.) 

 

For our purposes, statements will simply be denoted by 

lowercase letters of the alphabet, typically p, q, and r. I will 

refer to these as boolean variables as well. 

 

Given simple statements, we can construct more complex 

statements using logical connectives. Here are 4 logical 

connectives we will use: 

 

1) Conjunction: This is denoted by the ‘’ symbol. The 

statement p  q is read as “p and q.” Only if both the values 

of p and q are true does this expression evaluate to true. 

Otherwise it is false. 

 

2) Disjunction: This is denoted by the ‘’ symbol. The p  q is 

read as “p or q.” As long as at least one of the values of p or 

q is true, the entire expression is true 

 

3) Implication: This is denoted by the ‘’ symbol. The 

statement p  q is read as “p implies q”. Essentially, in a 

programming language, this logic is captured in an if then 

statement. If p is true, the q must be true. However, if p is 

not true, there is no guarantee of the truth of q. An 

important observation to note: when statements are 

combined with an implication, there is no need for there to 

be a causal relationship between the two for the implication 

to be true. 

 

 



Consider the following implications: 

 

If my bread is green, then I will not eat it. 

 

Here, if the bread is not green, that does not guarantee that I 

will eat it. Perhaps it is wheat bread and I hate wheat bread. 

All I know is that if my bread is green, I will definitely NOT 

eat it. 

 

If Pluto is the largest planet in our solar system, then pigs will 

fly out of my butt.  

 

Wayne would actually be making a correct implication here, 

(assuming that we currently have accurate knowledge about 

our solar system...) Since the first part of our implication is 

false, the entire implication is automatically true. 

 

 

4) Biconditional: This is denoted by the ‘’ symbol, and the 

statement p  q is read “p if and only if q.” The phrase “if 

and only if” is often abbreviated as “iff”. Breaking this 

down into pieces, this means that p  q AND q  p. Hence 

exactly when p is true, q is true. (And in all cases where p is 

false, q must be false as well.) 

 

Here is an example of a biconditional: 

 

If and only if my alarm clock rings in the morning, then I will 

attend my morning classes. 

 

From this statement we CAN deduce that if the alarm clock 

does NOT ring, then I will NOT go to my morning classes. 

 



Finally, it will be important to have a symbol to denote the 

negation of a statement/proposition. We will use the ‘’ 

symbol. The statement p will be read “not p.” This statement 

will have the opposite value of p. 

 

Truth Tables 
 

Now, given a particular compound statement, we can use a 

truth table to determine which values of the boolean variables 

result in the statement being true. 

 

The idea here is to simply make a table, listing all the possible 

combinations of values for each of the boolean variables in a 

statement. Then, plug these values into the statement and see if 

it is true or not with these values. This is probably easiest seen 

with an example. 

 

Consider the statement: p  (q  r). Here is a truth table: 

 

p q r q  r p(qr) 

0 0 0 1 0 

0 0 1 0 0 

0 1 0 1 0 

0 1 1 1 0 

1 0 0 1 1 

1 0 1 0 0 

1 1 0 1 1 

1 1 1 1 1 

 

Thus there are three possible combinations of values for p, q, 

and r that make p  (q  r) true.  

To see an example, let p, q and r be the following statements: 

 

p: I have taken out the trash. 



q: I have finished cleaning the dishes. 

r: I have watched 5 hours of TV. 

 

Assume that a child is a good one if p  (q  r) holds true, 

and bad otherwise. Under what conditions is a child good? 

 

If it turns out that a statement is always true (such as p  p), 

then it is called a tautology.  

 

If a statement is always false (such as make p  p), then it is 

called a contradiction. 

 

EXERCISE: Make a truth table for the statement: (p q)r. 

 

 



Algebra of Propositions 

 
It would be nice if we had some methodology for determining if 

two logical expressions are equal, or a method of simplifying a 

given logical expression. 

 

Perhaps the most obvious way to check for the equality of two 

logical expressions it to write out truth tables for both. 

However, this could be quite tedious. (But it does always 

work...) 

 

Two statements s and t are considered to be logically 

equivalent if s  t. 

 

We will need some laws to simplify logical expressions. Here is 

the list of laws from the text: 

 

1) p  p     (Law of Double Negation) 

2) (p  q)  p  q  (De Morgan’s Laws) 

3) (p  q)  p  q 

4) p  q  q  p   (Commutative Laws) 

5) (p  q)  r  p  (q  r)  (Associative Laws) 

6) p  (q  r)  (p  q)  (p  r) (Distributive Laws) 

7) p   (q  r)  (p  q)  (p  r) 

6) p  p  p    (Idempontent Laws) 

7) p  F  p, p  T  p  (Identity Laws) 

8) pp  T, pp  F  (Inverse Laws) 

9) p  T  T, p  F  F  (Domination Laws) 

10) p  (p  q)  p   (Absorption Laws) 

11) p  (p  q)  p 

 

 

 



 

We can use these laws to simplify a statement. Consider the 

following statement: 

 

(p  q)  (p  q)     (p  q)  (p  q) (DeMorgans) 

         (p  q)  (p  q)     (Double Neg.) 

      p  (q  q)     (Dist. Law) 

       p  F      (Inverse) 

       p       (Identity) 

 

Something else that will be helpful to us will be to expression 

implications using just and’s and or’s. By writing out truth 

tables, we find that 

 

(p  q)  (p  q)      (We’ll call this the implication identity.) 

 

Using this, we can also come up for an expression without 

implications that is equivalent to p  q. 

 

As an exercise, simplify the following expression, giving the 

reason for each simplification. 

 

(p  q)  [q  (r  q) ] 
 



Methods to Prove Logical Implications 

 
The standard form of an argument (or theorems) can be 

represented using the logical symbols we have learned so far: 

 

(p1 p2  p3  ... pn) q 

 

Essentially, to show that this statement is always true (a 

tautology), we must show that if all of p1 through pn are true, 

then q must be true as well. 

 

Another way to look at this is that we must show that if q is 

ever false, then at least ONE of p1 through pn must be false as 

well. (This is the contrapositive of the original assertion.) 

 

Let’s look at an example of how you might go about proving a 

statement in a general form, given some extra information. 

 

Let p, q, are r be the following statements: 

 

p: Daunte Culpepper throws for 4000 or more yards in 2006.  

q: Daunte Culpepper gets injured in 2006. 

r: The Dolphins win the Super Bowl for the 2006 season. 

 



Let the premises be the following: 

 

p1 : If Daunte Culpepper does NOT get injured in 2006, he will 

throw for 4000 yards or more. 

 

p2 : If Daunte Culpepper throws for 4000 or more yards in 

2006, the Dolphins will win the Super Bowl for the 2006 season. 

 

p3 : Daunte Culpepper did NOT get injured in 2006. 

 

*Note: I realize this whole exercise is 100% hypothetical and not 

based upon any actual game play from the real current NFL 

season. 

 

Now, I want to show that 

 

(p1   p2   p3)  r 

 

First, I must express p1, p2, and p3 in terms of p, q, and r. 

 

p1 : q  p 

 

p2 : p  r 

 

p3 : q 



Thus, we are trying to show the following: 

[([q  p)  (p  r)  (q)]  r 

 

We can prove that this is a tautology by using a truth table and 

verifying that this expression is true for all 8 possible sets of 

values for p, q and r. 



Another way we can show this statement is to use the laws of 

logic to simplify the statement as follows: 

 

[(q  p)  (p  r)  (q)]  r  (Identity for implication) 

 

[(q  p)  (p  r)  (q)]  r  (Double Negation) 

 

 [((q  p)  (p  r))  (q)]  r  (Identity for implication) 

 

((q  p)  (p  r))   (q)  r   (De Morgan’s Law) 

 

((q  p)  (p  r))  q  r    (Double Negation) 

 

(q  p)  (p  r)  q  r (De Morgan’s Law) 

 

(q  p)  (p  r)  q  r   (De Morgan’s Law) 

 

(q  p)  (p  r)  q  r (Double Negation) 

 

(r  (p  r))   (q   (q  p))  (Associate+Commutative) 

 

((r  p)  (r  r))   ((q  q)  (q  p))  (Distributive) 

 

((r  p)  T)   (T  (q  p)) (Inverse Laws) 

 

(r  p)    (q  p)   (Identity Laws) 

 

(p  p)    (r  q)   (Associate+Commutative) 

 

T    (r  q)     (Inverse Laws) 

 

T       (Domination Laws) 

 

 



When p q is a tautology, we say that the statement is a 

logical implication. This implication is equivalent to the 

following: 

 

q  p, which is the contrapositive as mentioned before. In 

certain situations, it will be easier to prove the contrapositive 

than the original statement. 

 

Getting back to the example we just went over,  we have shown 

that any set of statements p1 , p2 , and p3 of the form above 

imply the statement r.  

 

Now, you might notice that proving the example above by 

either using the truth table method or using the laws of logic 

took a great deal of effort for a relatively intuitive result. (Just 

by hearing the premises, you probably already knew that 

statement r followed logically.) 

 

If we examine a truth table, we will find that in most cases 

(most of the rows), at least one of the premises is false anyway. 

If this is the case, there is no need to even compute the value of 

the conclusion. So, we have an indication that we could trim 

some work.  

 

Also, it seems logical to have some rules of inference, rather 

than having to turn each inference into an equivalent logical 

expression without an inference. (What we will do is verify 

these rules with truth tables. Once they are proved, then we 

can use them on their own.) 

 

Next lecture, I will derive three of these rules, then show you 

the rest of them. 

 

 

 


