
More Induction Examples 

 
Prove the following formula is true for all positive integers n. 
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Use induction on n.  

Base Case. n=1. LHS = (-1)011 = 1, RHS = (1(1+1)(-1)0)/2 = 1 

Assume for an arbitrary value of n=k that 
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Under this assumption, prove for n=k+1 that 
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   = k(k+1)(-1)k-1/2 + (-1)k(k+1)(k+1),  

         using IH. 

   = (k+1)(-1)k[-k/2 + k + 1] 

   = (k+1)(-1)k[k/2 + 1] 

   = (k+1)(-1)k(k + 2)/2 

   = (k+1)(k+2)(-1)k/2 



Some Algebra Rules ... 

 

Laws of exponent and Logarithm: 
 

If a > 0,  ax • ay = ax+y    (ax)y = axy   

ax / ay = ax–y   a–x = 1/(ax) 
 

 

If b > 0 and b  1,  

 

logb(xy) = logb x + logb y  

logb(x/y) = logb x – logb y  

logb(x
p) = p logb x. 

 

Rules of inequalities: 

a > b  a + c > b + c  

if c > 0, then a > b  a • c > b • c 

if a > b and b > c  a > c;  

if a > b and c > d  a + c > b + d. 

 

Useful algebra rules: 

ab = 0  a = 0 or b = 0 

if bd  0, then a/b = c/d  ad = bc;  

(a + b)2 = a2 + 2ab + b2; (a + b)(a – b) = a2 – b2. 



A couple of summation rules 
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Couple More Examples: 
 

1) Prove 
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 Use induction on n>0. 

 

         Base case: n=1. LHS = 1/1 = 1 

    RHS = (1+1)(1/1) – 1 = 1 

 

         Assume for some n=k, 
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 Under this assumption, we must prove the formula for 

 n = k+1: 
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 = (k+1)Hk – k + Hk+1, using inductive hypothesis. 

 = (k+1)(Hk+1 – 1/(k+1)) – k + Hk+1 

 = (k+1)Hk+1 – 1 – k + Hk+1 

 = (k+2) Hk+1 – (1+k), which completes the induction. 

 

Thus, we have shown 
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= (n+1)Hn – n, for all positive 

integers n. 

 

 

 



2) Prove that 
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=  n(2n+1) for all positive integers n. 

 

 Use induction on n>0. 

 

 Base case: n=1. LHS = 1 + 2 = 3 

    RHS = 1(2(1)+1) = 3 

 

 Assume for some n=k, 
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 Under this assumption, we must show for n=k+1, that 
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 + (2k+1) + (2k+2) 

         = k(2k+1) + 4k + 3, using inductive hypothesis 

         = 2k2 + k + 4k + 3 

         = 2k2 + 5k + 3 

         = (2k + 3)(k + 1) 

         = (k+1)(2(k+1)+1),  

 

which completes the inductive proof.  

Thus, we have 
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=  n(2n+1) for all positive integers n. 

 



Examples of using induction on an inequality 
 

Prove by induction that n! > 2n for all n  4.  (Note: n! = n(n – 

1)···2·1, for n  1; 0! = 1 by convention.)  

 

We use induction on n  4. 

 

(Base Case) Consider n = 4.  In this case,  

 n! = 4! = 4·3·2·1 = 24, and  

 2n = 24 = 16 < 24.   

So the Basis Step is proved. 

 

(Induction Hypothesis) Consider the statement for some n=k. 

We will assume that k! > 2k. 

  

(Induction Step) Consider the statement for n=k+1.  We need 

to prove (k + 1)! > 2k+1  

 

(k + 1)! =  (k + 1) ·k!,   

      > (k + 1) ·2k, by the Induction Hypothesis 

      > 2 ·2k , because k + 1  5 > 2 

      = 2k+1 . 

 

By induction, we have proved the inequality n! > 2n for all n  

4.  
 

 



Use induction on n  1 to prove the following summation 

identity: 
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Base Case: n=1. LHS =1(2)1+2(2)2+3(2)3 = 34 

    RHS = 2(1)(4)1+1 = 32, so LHS > RHS. 

 

Assume for an arbitrary n=k that  
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Under this assumption, we must prove for n=k+1 that 
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> 2k(4)k+1 + 22k+2((2k+2)+2(2k+3)), using IH. 

 

= 2k(4)k+1 + 22(k+1)(2k+2+4k+6) 

 

= 2k(4)k+1 + 4(k+1)(6k+8) 

 

= (4)k+1[2k + 6k + 8] 

 

= (4)k+1[8k + 8] 

 

= (4)k+1 (4)(2)(k + 1) 

 

= (4)k+2(2)(k + 1) 

 

=2(k + 1)(4)k+2 

 

 



Use induction on n to prove the following inequality for all 

positive integers n: 
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Base Case: n=1. LHS = (1) = 1 

      RHS = 1(1+1)(4(1) – 1)/6 = 1  

 

Assume for an arbitrary value of n=k that 
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Under this assumption, prove for n=k+1 that 
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because each term in the summation is less than or equal to 

that last term when i = (k+1)2.  
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because the first summation from the IH contains k2 terms 

while the summation from the IS contains (k+1)2, leaving the  

difference for this summation. 
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Strong Induction 

 
This works almost the exact same as normal induction, except 

for your inductive hypothesis changes. In standard induction, 

the bulk of our proof is establishing the following: 

 

s(k)  s(k+1), for our open statement s(n). 

 

However, there are some inductive proofs where it is difficult 

to prove s(k+1) simply by assuming s(k). Perhaps you must 

assume that both s(k) and s(k-1) are true. 

 

In strong induction, rather than assuming that our open 

statement is only true for n=k, we will assume that our open 

statement is true for all values of n  k. So, in essence, we want 

to know prove the following: 

 

s(m)  s(k+1), where m is a positive integer such that m  k. 

 

So, a natural question is, do we have to change our base case to 

use strong induction? The answer is sometimes, but not always. 

 

In our inductive step, if we always have to assume that s(k) and 

s(k-1) are true, we must have two base cases. Can you see why? 

 

If we have to assume that s(k), s(k-1), and s(k-2) are true, then 

we must have three base cases. 

 

Sometimes, and I’ll show you when those cases arise, only one 

base case is necessary. 

 

I will point out examples of strong induction when they come 

up. 



A Fibonacci Number Example 
 

Prove that (Fn+1)2 – (Fn+2)( Fn) = (-1) n for all positive integers n 

 

Base Cases: n = 1, LHS = F2
2 – F3*F1 = 12 - 2*1 = -1 

       RHS = (-1)1 = -1 

 

                     n = 2, LHS = F3
2 – F4*F2 = 22 – 3*1 = 1 

       RHS = (-1)2 = 1 

 

Inductive Hypothesis: Assume for all n  k that 

 (Fn+1)2 – (Fn+2)(Fn) = (-1)n 

 

Inductive Step: Prove for n = k+1 

 (Fk+2)2 – (Fk+3)(Fk+1) = (-1)k+1 

 

Since Fn = Fn-1 + Fn-2 we can say: 

 

(Fk+2)2 – (Fk+3)(Fk+1) = (Fk+1 + Fk)2 - (Fk+1 + Fk+2) Fk+1 

           

 = Fk+1
2 + 2 Fk+1 Fk + Fk

2 - Fk+1
2 - Fk+1 Fk+2 

 = Fk+1[2Fk - Fk+2] + Fk
2 

 = Fk+1[2Fk – (Fk+1 + Fk)] + Fk
2 

 = Fk+1[2Fk – Fk+1 - Fk)] + Fk
2 

 = Fk+1[Fk – Fk+1] + Fk
2 

 = Fk+1[Fk – (Fk + Fk-1)] + Fk
2 

         = Fk+1(-Fk-1) + Fk
2 

 = Fk
2 - Fk+1 Fk-1

  

 = (-1)k-1(-1)2 = (-1)k+1 

 

 


