
Euclid’s Algorithm 

 
The Greatest Common Divisor(GCD) of two integers is defined 

as follows: 

 

An integer c is called the GCD(a,b) (read as the greatest 

common divisor of integers a and b) if the following 2 

conditions hold: 

 

1) c | a  c | b 

2) For any common divisor d of a and b, d | c. 

 

Rule 2 ensures that the divisor c is the greatest of all the 

common divisors of a and b. 

 

One way we could find the GCD of two integers is by trial and 

error. Another way is that we could prime factorize each 

integer, and from the prime factorization, see which factors are 

common between the two integers. However, both of these 

become very time consuming as soon as the integers are 

relatively large.  

 

However, Euclid devised a fairly simple and efficient algorithm 

to determine the GCD of two integers. The algorithm basically 

makes use of the division algorithm repeatedly. 

 

Let’s say you are trying to find the GCD(a,b), where a and b 

are integers with a  b > 0 

 

 

 

 

 

 



Euclid’s algorithm says to write out the following: 

 

a = q1b + r1,   where 0 < r < b 

b = q2r1 + r2,  where 0 < r2 < r1 

r1 = q3r2 + r3,  where 0 < r3 < r2 

. 

. 

ri = qi+2ri+1+ ri+2, where 0 < ri+2 < ri+1 

. 

. 

rk-1 = qk+1rk 

 

Euclid’s algorithm says that the GCD(a,b) = rk 

 

This might make more sense if we look at an example: 

 

Consider computing GCD(125, 87) 

 

125 = 1*87 + 38 

87 = 2*38 + 11 

38 = 3*11 + 5 

11   = 2*5   + 1 

5 = 5*1 

 

Thus, we find that GCD(125,87) = 1. 

 

Let’s look at one more quickly, GCD(125, 20) 

125 = 6*20 + 5 

20 = 4*5, 

 

thus, the GCD(125,20) = 5 

 

 

 
 



Proof That Euclid’s Algorithm Works 
 

Now, we should prove that this algorithm really does always 

give us the GCD of the two numbers “passed to it”. First I will 

show that the number the algorithm produces is indeed a 

divisor of a and b. 

 

a = q1b + r1,   where 0 < r < b 

b = q2r1 + r2,  where 0 < r2 < r1 

r1 = q3r2 + r3,  where 0 < r3 < r2 

. 

. 

ri = qi+2ri+1+ ri+2, where 0 < ri+2 < ri+1 

. 

. 

rk-1 = qk+1rk 

 

From the last equation, we know that rk | rk-1. So, we know that 

we can express rk-1 = crk, where c is an integer. Now consider 

the previous equation: 

 

rk-2 = qkrk-1+ rk = qkcrk, + rk = rk(qkc + 1) 

 

Thus, we have that rk | rk-2. 

 

In our equation previous to that one, we have: 

 

rk-3 = qk-1rk-2+ rk-1 

 

 

 

 

 

 



From here , since rk | rk-1 and rk | rk-2, using our rules of 

divisibility we have that rk | rk-3. As you can see, we can 

continue this process, considering each previous equation until 

we get to the last two, where we will find that rk | a and rk | b. 

Thus, we find that Euclid’s algorithm indeed gives us a 

common factor of a and b. 

 

Now, we have one more part to prove – and that is to show that 

the common divisor that Euclid’s algorithm produces is the 

largest possible. This proof is going to look similar to the 

previous one, but it is different in that we will start by 

assuming that a and b have a common factor d, and then show 

that d | rk. 

 

Consider an arbitrary common factor d of a and b. If d is a 

common factor, we can rewrite a and b as follows: 

 

a = da’ b = db’, where d, a’, b’ are all positive integers. 

 

Now, consider the first equation from Euclid’s algorithm: 

 

a = q1b + r1.  

r1 = da’ - q1db’ (Substitute for a and b, and solve for r1.) 

    = d(a’ - q1b’) 

 

Thus, we have that d | r1. 

 



Now, consider the second equation, and repeat the steps we did 

on the first, this time solving for r2. (Note: We will let r1=dr1’, 

where r1’ is an integer.) 

 

b = q2r1 + r2. 

 

r2 = db’ - q2dr1’ 

    = d(b’ - q2d) 

 

As you can see, we can continue this process through each of 

the equations until we hit the second to last one, where we will 

have: 

 

rk-2 = qkrk-1+ rk  

 

rk = drk-2’ - qkdrk-1’ = d(rk-2’ - qkrk-1’),  

 

thus, d | rk.  

 

But this says that any arbitrary common factor of a and b that 

we originally picked divides into rk, the value that Euclid’s 

algorithm produced. Since we know that rk IS a common 

factor to both a and b, this shows that is must be the largest 

possible common factor, or the GCD(a,b). 

 



Extended Euclidean Algorithm 

 
One of the consequences of the Euclidean Algorithm is as 

follows: 

 

Given integers a and b, there is always an integral solution to 

the equation 

 

ax + by = gcd(a,b). 

 

Furthermore, the Extended Euclidean Algorithm can be used 

to find values of x and y to satisfy the equation above. The 

algorithm will look similar to the proof in some manner. 

 

Consider writing down the steps of Euclid's algorithm: 
 

a = q1b + r1,   where 0 < r < b 

b = q2r1 + r2,  where 0 < r2 < r1 

r1 = q3r2 + r3,  where 0 < r3 < r2 

. 

. 

ri = qi+2ri+1+ ri+2, where 0 < ri+2 < ri+1 

. 

rk-2 = qkrk-1+ rk,  where 0 < rk < rk-1 

rk-1 = qk+1rk 

 

Consider solving the second to last equation for rk. You get 

 

rk = rk-2 - qkrk-1, or  

 

gcd(a,b) = rk-2 - qkrk-1 

 

Now, solve the previous equation for rk-1: 
 

rk-1 = rk-3 - qk-1rk-2, 



 

and substitute this value into the previous derived equation: 

 

gcd(a,b) = rk-2 - qk(rk-3 - qk-1rk-2) 

gcd(a,b) = (1 + qkqk-1)rk-2 - qkrk-3 

 

Notice that now we have expressed gcd(a,b) as a linear 

combination of rk-2  and rk-3. Next we can substitute for of rk-2  

in terms of of rk-3  and  rk-4, so that the gcd(a,b) can be 

expressed as the linear combination of  of rk-3  and  rk-4. 

Eventually, by continuing this process, gcd(a,b) will be 

expressed as a linear combination of a and b as desired. 

 

This process will be much easier to see with examples: 

 

Find integers x and y such that 

 

135x + 50y = 5. 

 

Use Euclid's Algorithm to compute GCD(135, 50): 

 

135 = 2*50 + 35 

50   = 1*35 + 15 

35   = 2*15 + 5 

15   = 3*5 

 

Now, let's use the Extended Euclidean algorithm to solve the 

problem: 

 

5 = 35 - 2*15, from the second to last equation 35   = 2*15 + 5. 

 

But, we have that 

15 = 50 - 35, from the third to last equation 50   = 1*35 + 15. 

 

Now, substitute this value into the previously derived equation: 



 

5 = 35 - 2*(50 - 35) 

5 = 3*35 - 2*50 

 

Now, finally use the first equation to determine an expression 

for 35 as a linear combination of 135 and 50: 

 

35 = 135 - 2*50. 

 

Plug this into our last equation: 

 

5 = 3*(135 - 2*50) - 2*50 

5 = 3*135 - 8*50 

 

So, a set of solutions to the equation is x=3, y=-8. 

 

 

 
 


