
Combinations 

 
Combining our result for counting combinations, some logic, the 

sum rule and the product rule, we can handle more 

sophisticated counting questions.  

 

Furthermore, what we find out is that depending on how you 

view a counting question conceptually, the amount of work to get 

to the same answer (that looks different) varies greatly.  

 

In addition, there are many counting questions that are really 

just combinations in disguise. 

 

Finally, with combinations, we can do both algebraic proofs and 

combinatorial proofs. The former you are likely familiar with, 

but the latter are fairly different; they involve making 

arguments in English to show a one to one correspondence 

between two different sets. This latter skill is critical in 

becoming better at solving counting problems. 

 

In this lecture, we'll investigate all of these qualities of 

combinations. It's not a coincidence that the study of counting is 

called "combinatorics." Combinations ((
𝒏
𝒌
)) truly represent the 

backbone of the art of counting. 

 

  



Combinations Problem Example 

 

Let S= {1, 2, 3, ..., 30}. 

 

How many subsets A of S contain 5 elements, with 5 being the 

least? 

 

In essence, we know that 5 must be one of our elements, so we 

are really free to choose only 4 elements. But, we have a 

restriction here too. We must choose those four elements from 

the set {6, 7, ..., 30}. The number of ways to do this are 25C4. 

 

So this was a straight application of a combination after making 

a single observation. 

 

Example Problem Building on the Previous One 

 

How many subsets A of S contain 5 elements with the smallest 

element not being equal to 5? 

 

We know the total number of subsets of S that are of size 5 is are 

30C5. And we also know that of these, exactly are 25C4 have 5 as 

the smallest element. Thus, our answer should be the difference 

of these two, or 30C5 - 25C4. 

 

Here, we added the subtraction principle to our previously 

derived combination. 

 

 

 

 

 

 

 

 



A More Difficult Question? 

How many subsets of S contain 5 elements with the smallest 

element less than 5? 

 

This is actually quite a difficult question. The problem is that we 

don’t know how many of the elements are less than 5. In fact we 

have 4 (disjoint) possibilities: 

 

1 element is less than 5: Thus we choose 1 element from the set 

{1,2,3,4} and 4 elements from the set {5,6,...,30}. Since these 

choices are independent, we can invoke the product rule to find 

the total number of ways to do this as 4C1*26C4. 

 

2 elements are less than 5: Thus we choose 2 elements from the 

set {1,2,3,4} and 3 elements from the set {5,6,...,30}. Since these 

choices are independent, we can invoke the product rule to find 

the total number of ways to do this as 4C2*26C3. 

 

3 elements are less than 5: Thus we choose 3 elements from the 

set {1,2,3,4} and 2 elements from the set {5,6,...,30}. Since these 

choices are independent, we can invoke the product rule to find 

the total number of ways to do this as 4C3*26C2. 

 

4 elements are less than 5: Thus we choose 4 elements from the 

set {1,2,3,4} and 1 element from the set {5,6,...,30}. Since these 

choices are independent, we can invoke the product rule to find 

the total number of ways to do this as 4C4*26C1. 

 

Now, using the sum rule, we can add these values up to get the 

following answer: 

 

4C1*26C4 + 4C2*26C3 + 4C3*26C2 + 4C4*26C1 = 76726 

 

So, here we used multiple combinations, the product rule and 

the addition rule. Could we have solved it more easily? 



A slightly easier approach 
 

We have four cases: 

 

Case 1: 1 is the smallest number. Then we must pick 4 numbers 

from the remaining 29. This can be done in 29C4 ways. 

 

Case 2: 2 is the smallest number. Then we must pick 4 numbers 

from the remaining 28. This can be done in 28C4 ways. 

 

Case 3: 3 is the smallest number. Then we must pick 4 numbers 

from the remaining 27. This can be done in 27C4 ways. 

 

Case 4: 4 is the smallest number. Then we must pick 4 numbers 

from the remaining 26. This can be done in 26C4 ways. 

 

So our answer is also 

 

29C4 + 28C4 + 27C4 + 26C4 = 76726. 

 

 

Probably the easiest approach 

 

We have already shown that there are a total of 30C5 subsets. Of 

these, we want to subtract out those whose smallest element is 5 

or greater. We can count this group because it is just the number 

of subsets of the set {5, 6, 7, …, 30}, which is just 26C5. Thus, 

another way to express the answer to this question is  

 

30C5 - 26C5 

 

I created this example to show the differences in difficulty of the 

same question, depending on how one breaks 

down/characterizes the counting to be done. 

 



Odd/Even Sized Subsets of a Set 

 

For any set, the number of subsets of even cardinality is the same 

as the number of subsets of odd cardinality. One way to look at 

this is the following. We know that this fact is true for a set of 

size 1. (There are two subsets, one with cardinality 0 and the 

other with cardinality 1.) Imagine adding one element to this set 

and then listing all the new subsets. For each “old” subset of 

even cardinality, we are adding a “new” subset of odd 

cardinality and vice versa. Thus, we maintain the same number 

of subsets of even and odd cardinality. Since a set of size n has 

2n subsets, the set has 2n-1 even subsets, and 2n-1 odd subsets. 

 

Formally, this can be proven via induction |S|, the size of the set 

S for all non-empty sets. This is a good practice problem for 

everyone to do!!! 

 

Combinatorial Proofs 

 
A combinatorial proof is one where instead of doing lots of 

traditional math (say algebra), we make a conceptual counting 

argument to prove a claim. 

 

Let's look at a simple example: Prove that for all positive 

integers k, 
(𝟐𝒌)!

𝟐𝒌
 is an integer. 

 

Consider counting the number of permutations of the n symbols 

x1 , x1 , x2 , x2 , ... xk , xk. Using the formula derived above, we 

calculate this value to be: (2k)!/(2!)k.  

 

But we know that 2! = 2, this the final value is 

 

(2k)!/2k, which MUST BE an integer since the number of 

permutations of a group of letters is ALWAYS an integer. 



Pascal Triangle Identity - proved two ways 

 
In high school, many students encounter what is known as 

Pascal's Triangle (typically taught in Algebra II in the United 

States), the first few rows of which looks like this: 

 

     1 

    1  1 

   1  2  1 

  1  3  3  1 

 1  4  6  4  1 

1  5  10  10  5  1 

 

It's likely that you learned the following things about this 

triangle: 

 

1) Put 1's on the outsides of each row (first and last item) 

2) To calculate any given item, just add the two numbers 

directly above it. 

3) These are the numbers you use when expanding out (x+y)n. 

For example, (x+y)5 = x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5. 

 

However, for whatever reason, many students aren't taught 

that the entry in row n, item k on this table are simply equal to 

(
𝒏
𝒌
), the number of ways to choose k items out of n. 

 

Once we know that the latter is true, that means that what our 

high school teacher really taught us with rule #2 is that 

 

(
𝒏
𝒌
) = (

𝒏 − 𝟏
𝒌 − 𝟏

) + (
𝒏 − 𝟏
𝒌

) 

 

provided that 0 < k < n. If k = 0 or k = n, then (
𝒏
𝟎
) = (

𝒏
𝒏
) = 𝟏. 

 



So, let's prove this identity!!! 

 

Combinatorial Proof 

First let's do the combinatorial proof. 

 

Say we have n candies and we want to select k of them. Let one 

of the candies be a Snickers bar. There are n-1 candies that are 

not Snickers bars. 

 

By definition, we can select our k candies out of n in (
𝒏
𝒌
) ways. 

 

Now, let's count these (
𝒏
𝒌
) ways in a different manner. Let's 

split up our counting into two disjoint groups: 

 

1) Sets of k candies that HAVE Snickers. 

 

2) Sets of k candies that do NOT have Snickers. 

 

Let's count the number of sets in category 1. Since we have to 

select a Snickers, we really only have k-1 candies left to select. 

We are selecting those k-1 candies from the n-1 choices 

remaining, so we can do this in (
𝒏 − 𝟏
𝒌 − 𝟏

) ways, by definition of 

combination. 

 

Now, let's count the number of sets in category 2. We have 

NOT selected Snickers, so we have to select ALL k candies 

from the remaining n-1 candies, which we can do in (
𝒏 − 𝟏
𝒌

) 

ways. 

 

To visualize this, let's say n = 5, k = 3, with our candies being 

{Snickers, OhHenry, Hershey, M&Ms, Reece's} 

 



Sets with Snickers   Sets without Snickers 

{S,O,H}     {O,H,M} 

{S,O,M}     {O,H,R} 

{S,O,R}     {O,M,R} 

{S,H,M}     {H,M,R} 

{S,H,R} 

{S,M,R} 

Sets in Yellow are all   Sets in Blue are all combos of 

combinations of 2 items  3 items out of 4 remaining. 

out of 4. 

 

Since the two categories are disjoint, AND they cover ALL sets 

of k candies out of n, it follows that the sum of these two equals 

(
𝒏
𝒌
), giving us the identity:  

 

(
𝒏
𝒌
) = (

𝒏 − 𝟏
𝒌 − 𝟏

) + (
𝒏 − 𝟏
𝒌

) 

 

  



Now, let's look at an algebraic proof, where we start with the 

RHS and show it equals the LHS: 

 

(
𝒏 − 𝟏
𝒌 − 𝟏

) + (
𝒏 − 𝟏
𝒌

) =
(𝒏 − 𝟏)!

(𝒌 − 𝟏)! (𝒏 − 𝒌)!
+

(𝒏 − 𝟏)!

𝒌! (𝒏 − 𝟏 − 𝒌)!
 

 

=
(𝒏 − 𝟏)!

(𝒌 − 𝟏)! (𝒏 − 𝟏 − 𝒌)!
[

𝟏

𝒏 − 𝒌
+
𝟏

𝒌
] 

 

 

=
(𝒏 − 𝟏)!

(𝒌 − 𝟏)! (𝒏 − 𝟏 − 𝒌)!
[

𝒌

(𝒏 − 𝒌)𝒌
+

𝒏 − 𝒌

𝒌(𝒏 − 𝒌)
] 

 

=
(𝒏 − 𝟏)!

(𝒌 − 𝟏)! (𝒏 − 𝟏 − 𝒌)!
[

𝒏

(𝒏 − 𝒌)𝒌
] 

 

=
(𝒏)!

(𝒌)! (𝒏 − 𝒌)!
 

 

= (
𝒏
𝒌
) 

 

Note: The key algebra here is that x*[(x-1)!] = x! for all 

positive integers x. 

 

 

 

  



Symmetry of Combinations via Combinatorial Proof 

 

Inspecting Pascal's Triangle, it's fairly easy to see that  

 

(
𝒏
𝒌
) = (

𝒏
𝒏 − 𝒌

) 

 

We prove this combinatorially as follows: 

 

Consider any arbitrary set of k items out of n. Its selection can 

be matched with the n-k items NOT SELECTED. This is a one-

to-one correspondence between the two sets, so the set sizes must 

be equal. Namely, for each combination of k items out of n, I can 

determine the unique n-k items not selected. Here is an 

illustration of this identity using our candy example with n = 5, 

k = 3: 

 

In Set    Not In Set 

{S,O,H}    {M,R}     

{O,H,M}    {S,R} 

{S,O,M}    {H,R}  

{O,H,R}    {S,M} 

{S,O,R}    {M,H} 

{O,M,R}    {S,H} 

{S,H,M}    {O,R} 

{H,M,R}    {S,O} 

{S,H,R}    {O,M} 

{S,M,R}    {O,H} 

 

This can be proven algebraically also and is left as an exercise. 

 

 

 

 

 



 

Another Beautiful Combinatorial Proof 

 
Here is another really nice identity that has a much easier 

combinatorial proof than algebraic one: 

 

∑(
𝒏
𝒊
)
𝟐
= (

𝟐𝒏
𝒏
)

𝒏

𝒊=𝟎

 

 

The RHS represents choosing n items out of 2n items. Now, 

let's split up our counting in a different way. 

 

Color n of the objects red and n of the objects blue. 

 

One way to split up our counting is as follows: 

 

0) 0 red objects, n blue objects 

1) 1 red object, n-1 blue objects 

2) 2 red objects, n-2 blue objects 

3) 3 red objects, n-3 blue objects 

… 

n-1) n-1 red objects, 1 blue object 

n) n red objects 0 blue objects 

 

Let a row on this chart be row i. Then that row reads that we 

should choose i red objects and n-i blue objects. We can do this 

in (
𝒏
𝒊
) (

𝒏
𝒏 − 𝒊

) ways. But, using the symmetry identity proven on 

the last page, this is equal to (
𝒏
𝒊
) (
𝒏
𝒊
) = (

𝒏
𝒊
)
𝟐
. Finally to add up 

all of our categories, we just have to sum up this expression as i 

ranges from 0 to n inclusive. Hence, when adding up the number 

of ways to choose n objects out of 2n objects split into these n+1 

categories, we get: 



(
𝟐𝒏
𝒏
) =∑(

𝒏
𝒊
)
𝟐

𝒏

𝒊=𝟎

 

 

as desired! 

 

Ant Moving Problem 

Let an ant start at (0, 0) on a Cartesian grid. In a single move 

the ant can move one unit in the positive x-axis or one unit in the 

positive y axis. Let's say the ant wants to go to the location (a, 

b). How many ways can the ant do it? 

 

Ultimately, the ant's path can be viewed as a series of a+b moves, 

where each move is either U (for up) or R (for right). So, for 

example, if the target location was (6, 3), a valid set of moves to 

get there would be RUURURRRR. There is a one to one 

correspondence between strings of 6 Rs and 3Us and all possible 

paths the ant could take. The number of such strings is 
𝟗!

𝟔!𝟑!
, using 

the permutation formula.  

 

 Alternatively, we can look at this problem knowing that 

the ant makes 9 moves, and the ant must choose 6 of those 

9 moves to be right. The ant can do this in (
𝟗
𝟔
) ways. Of 

course, equally valid, the ant could just choose 3 out of the 

9 ways to move U, which can be done in (
𝟗
𝟑
) ways. 

 

All three of these answers are correct, and each one represents 

a slightly different way of viewing the items that are being 

counted. (Of course, numerically, these three expressions equal 

the same value, 84.) 

 

 

 



Required Stopping Point 

Let's say that the ant wants to go to (10, 12) but needs to stop at 

the intersection (6, 3) on the way to his final destination. 

 

Well, the ant just has to get to (6, 3), which can be done in (
𝟗
𝟔
) 

ways. 

 

From there, the ant has to move 4 units to the right and 9 units 

up, which can be done in (
𝟒 + 𝟗
𝟒

) ways. 

 

Since any of the first paths can be paired with any of the second 

paths, we are counting ordered pairs and need to multiply. The 

total number of paths is (
𝟗
𝟔
) (
𝟏𝟑
𝟒
). (Note: You can probably do 

some fun fraction reduction here since the 9! will completely 

cancel!) 

 

Forbidden Location 

Now let's say instead of having to stop at (6, 3), our ant wants to 

avoid (6, 3). We can use subtraction principle. 

 

The total number of paths is (
𝟐𝟐
𝟏𝟎

). Of these, we already 

established that (
𝟗
𝟔
) (
𝟏𝟑
𝟒
) go through (6, 3), so we just subtract 

these out of the total to get the final answer: (
𝟐𝟐
𝟏𝟎

) − (
𝟗
𝟔
) (
𝟏𝟑
𝟒
). 

 

Open Question: How might we deal with 2 forbidden locations? 

 

 

 

 

 



Ascending Strings 

An ascending string is one where all of the vowels and 

consonants appear in alphabetical order, relatively speaking. 

Thus, “GAMERS” is an ascending string since the consonants, 

G, M, R and S, are already in alphabetical order, relative to 

their position in the string, and the vowels, A and E are also in 

alphabetical order, relative to one another. How many 

ascending strings can be made out of the letters A, B, C, D, E, F, 

G, H, I, O, and U? 

 

First of all, we must simply place the location of both the vowel 

and consonants in the string. Out of the 11 locations for all of 

the letters, 5 must be chosen for the vowels. This can be done in 










5

11
 ways. 

 

Once these positions are fixed, then we must arrange the vowels. 

BUT, we realize that vowels, once their locations have been 

chosen, are FORCED to go in alphabetical order. Thus, there is 

ONLY one valid arrangement for the vowels once their locations 

are chosen. Similarly, once the consonant locations are chosen, 

there is ONLY one valid arrangement of those also – in 

alphabetical order. Thus, once the locations of the vowels are 

chosen, the rest of the ascending string falls into place. Thus, the 

number of valid ascending strings is 








5

11
. 

  



Forbidden Locations 

You must arrange 3 oak trees, 4 maple trees and 5 birch trees in 

a line such that no two of the birch trees are adjacent to one 

another. In how many ways can you arrange the trees? (Assume 

that two oak trees are indistinguishable, as are two maples and 

two birches.) 

 

It is tempting to pick four trees to be in between the five birch 

trees, but that approach leads to confusing situations. 

 

Instead, it is better to take the following approach: 

 

Place the 7 non-birch trees (which will be designated with an N 

below): 

 

__  N  __  N __  N __ N __ N __ N __ N __ 

 

Notice that there are 8 slots in which the birch trees can be 

placed. We can choose any five of those slots for the birch trees, 

which can be done in  








5

8
 ways. Then, we can arrange the non-

birch trees in the number of ways we can permute 3 oaks and 4 

maples, which is just .
3

7

!4!3

!7








  (Alternatively, we are choosing 3 

slots out of the seven Ns to place the Oak trees.) 

 

Thus, the final answer, since each of these choices is independent 

and combined together for one arrangement is their product, 

.
3

7

5

8
















 

 

 

 

 

 



Shooting Targets 

If you must shoot the bottom-most target available when 

shooting at a particular color, in how many ways (orders) can 

you shoot all of the targets? 

 
 

Red Green Blue 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

The key here is to realize that if you are shooting at a target of a 

particular color, you are forced to hit one of them. Thus, a string 

of 4 Rs (standing for red), 2 Gs (standing for green) and 3 Bs 

(standing for blue) corresponds to a single order of hitting the 

targets. Each different string corresponds to a different way to 

hit the targets. For example, the string RGGBRRBBR 

corresponds to hitting the 4th red, the 2nd green, the 1st green, the 

3rd blue, the 3rd red, the 2nd red, the 2nd blue, the 1st blue and the 

1st red, in that order. 

 

Thus, the total number of ways to hit the targets down is the 

number of permutations of 4 Rs, 2 Gs and 3Bs, which is 

1260
!3!2!4

!9
 . We can view as a combination as well: first we select 

4 slots out of 9 to place the Rs. Then we select 2 slots of the 

remaining 5 to place the Gs: (
𝟗
𝟒
) (
𝟓
𝟐
) = 𝟏𝟐𝟔 × 𝟏𝟎 = 𝟏𝟐𝟔𝟎. 

 

 



Proof of the Binomial Theorem 

 

(𝒙 + 𝒚)𝒏 =∑(
𝒏
𝒊
) 𝒙𝒊𝒚𝒏−𝒊

𝒏

𝒊=𝟎

 

 

(x + y)(x + y)(x + y)(x + y)(x + y) 

 

Each term is going to have some x's and some y's. The 

highlighted blue terms yield the product x3y2. But another time 

we get that same term is with these selections: 

 

(x + y)(x + y)(x + y)(x + y)(x + y) 

 

So the question is, how many times does the term x3y2 appear in 

the expansion of multiplying out (x+y)n? 

 

Basically, we are choosing 3 of the terms out of the 5 terms to 

get our x item, leaving the y item to be selected from the other 2 

terms. But, by definition, we can make this selection in (
𝟓
𝟑
) ways. 

 

More generally in the expansion of (x+y)n, the term xiyn-i 

appears exactly (
𝒏
𝒊
) times. 

 

(2x - 3y)5 =  

 

(2x)5 + 5(2x)4(-3y)1+ 10(2x)3(-3y)2 + 10(2x)2(-3y)3 + 5(2x)1(-3y)4+ 

(-3y)5 = 

 

32x5 - 240x4y + 720x3y2 - 1080x2y3 + 810xy4 - 243y5. 

 

 

 

 


