
Unsigned Binary Representation of Numbers

Integers in the computer are stored in binary representation called

"Two's Complement", but for the purposes of this class, we'll only

deal with unsigned integers.

A typical integer value in a computer is stored in 32 bits, or 32 on-

off switches. This representation is known as binary, 0 for off, 1 for

on. In an unsigned representation of binary, known as base 2, each

bit has a value of 2k, where k represents the number of bits from the

right end of the number.

For example, consider the binary number 101110:

Its decimal (base 10) value is

1 x 25 + 0 x 24 + 1 x 23 + 1 x 22 + 1 x 21 + 0 x 20 = 46.

This is how to convert from base 2 (unsigned binary) to base 10 (our

regular base, decimal), we multiply each bit set to 1 by its

corresponding value 2k based on the location of the bit and then add

these.

To do the opposite (converting from decimal to binary), we

repeatedly divide our number by 2 keeping track of each remainder

as follows until the quotient is 0:

2 | 46

2 | 23 R 0 Then, just read the remainders in

2 | 11 R 1 reverse order from bottom to top to

2 | 5 R 1 get the binary equivalent of 46:

2 | 2 R 1 101110.

2 | 1 R 0

2 | 0 R 1

Bitwise Operators

In logic, we perform and, or and xor operations between Boolean

variables. We can view a single bit as a Boolean value as well 0 =

false, 1 = true. Thus, a binary integer can be viewed as a sequence of

Boolean variables.

Naturally, we can define and, or and xor between integers by

applying the binary operation to each corresponding set of bits

between two integers. The following bitwise operations are fairly

consistent between various computer programming langauges.

Using the technique shown above, we can obtain the binary

representation of 47:

00101111

Also, 72 in binary is

01001000.

Bitwise operators take each corresponding bit in the two input

numbers and calculate the output of the same operation on each set

of bits.

For example, a bitwise AND is represented with a single ampersand

sign: &. This operation is carried out by taking the and of two bits.

If both bits are one, the answer is one. Otherwise, the answer is zero.

Here is the bitwise and operation on 47 and 72:

 0 0 1 0 1 1 1 1

& 0 1 0 0 1 0 0 0

 0 0 0 0 1 0 0 0 (which has a value of 8.)

Thus, we only set the bit in the result to 1 if both bits in that

corresponding column are one. By default, a bit that doesn't exist in

one of the inputs is 0.

Here is a chart of the other bitwise operators that correspond to

their logical namesakes:

Function Operator Meaning

and & 1&1 = 1, rest = 0

or | 0 | 0 = 0, rest = 1

xor ^ 1 ^ 0 = 0 ^ 1 = 1

0 ^ 0 = 1 ^ 1 = 0

Now, let’s calculate the other bitwise operations between 47 and 72:

 0 0 1 0 1 1 1 1

| 0 1 0 0 1 0 0 0

 0 1 1 0 1 1 1 1 (which has a value of 111.)

 0 0 1 0 1 1 1 1

^ 0 1 0 0 1 0 0 0

 0 1 1 0 0 1 1 1 (which has a value of 103.)

Left and Right Shift Operators

The left-shift operator is <<.

The right-shift operator is >>.

When we left-shift a value, we must specify how many bits to left-

shift it. What a left-shift does is move each bit in the number to the

left a certain number of places. In essence, so long as there is no

overflow, a left-shift of one bit multiplies a number by two (since

each bit will be worth twice as much).

It follows that a left shift of 2 bits multiplies a number by 4 and a

left shift of 3 bits multiples a number by 8. In general, a left-shift of

k bits multiplies a number by 2k.

A right-shift of 1 bit moves every bit over to the right by 1 and

discards the least significant bit. Effectively, this does an integer

division on the original number by 2. In general, a right-shift of k

bits performs an integer division by 2k on a number. An integer

division is simply taking the real number division and throwing

away the part after the decimal point.

Here are a couple examples:

13 << 2 is equal to 52

47 >> 3 is equal to 5

To see this in bits, 13 is 1101. When it's left-shifted by 2 bits it

becomes 110100, which when converted back to decimal is 52.

47 is 101111. When it's right-shifted by three bits, we just chop off

the last three bits to get 101, which is 5, when converted back to

decimal.

