
COP 3503: Questions from Old Final Exams (for 4/19/2018 Final Exam Review)

1) Dynamic Programming (Matrix Chain Multiplication)

Using the dynamic programming algorithm shown in class, determine the minimum number of

multiplications to calculate the matrix product ABCD, where the dimensions of A, B, C and D

are given below:

A: 2 x 5, B: 5 x 4, C: 4 x 1, D: 1 x 5

 A B C D

A 0

B X 0

C X X 0

D X X X 0

2) Dynamic Programming – Longest Increasing Sequence

Assume that you've already written a method LCS, that calculates the length of the longest

common subsequence between two sequences of integers. (Its prototype is given below.) Write a

method that takes in 1 sequence of integers and calculates its longest increasing sequence. For ease

of implementation, assume that the input only contains distinct integers. Note: You may use both

the Arrays.copyOf and Arrays.sort methods. These are listed below. (Note: The code is pretty

short.)

// Returns an array storing the first newLength elements of original.
int[] copyOf(int[] original, int newLength);

// Sorts the specified array into ascending numeric order.

void sort(int[] a);

public static int lis(int[] seq) {

}

public static int lcs(int[] x, int[] y) {

 int[][] table = new int[x.length+1][y.length+1];

 for (int i = 1; i<=x.length; i++) {

 for (int j = 1; j<=y.length; j++) {

 if (x[i-1] == y[j-1])

 table[i][j] = 1+table[i-1][j-1];

 else

 table[i][j] = Math.max(table[i][j-1], table[i-1][j]);

 }

 }

 return table[x.length][y.length];

}

3) Dynamic Programming – Zero/One Knapsack Problem

Find the maximum valued knapsack of size 12 or less choosing from the following items (only 1

copy of each item is available). To get credit, please use the algorithm shown in class. Here are

the items from which you are choosing:

Item Weight Value

Apple 3 4

Banana 4 6

Cantaloupe 7 13

Durian 5 9

Emblic 2 5

Fig 1 3

Show the algorithm by filling in the following table:

Item 1 2 3 4 5 6 7 8 9 10 11 12

Apple

Banana

Cantaloupe

Durian

Emblic

Fig

The correct answer to the query should be in the bottom right square of the table.

4) Graphs – Topological Sort

Alice has to complete items 1 through 10. The following ordered pairs show the dependency

between the items she must complete. Namely, for each ordered pair (a, b) shown below, she must

complete item a before item b.

(2, 7), (8, 3), (9, 2), (4, 5), (4, 1), (4, 7) and (6, 10).

Show the ordering of the items produced by the algorithm shown in class that builds the list from

the front and always adds "safe" nodes iteratively. When choosing between multiple possible

"safe" nodes, always add the lowest numbered one first.

_____ , _____ , _____ , _____ , _____ , _____ , _____ , _____ , _____ , _____

5) Algorithm Design – Dynamic Programming

Describe a dynamic programming algorithm (in words) to solve the following problem:

Soccer players are ordered 0, 1, 2, …, n – 1, where n is a positive integers less than or equal to

100. Each player i (0 ≤ i ≤ n-2) can pass to any player j such that j > i. The probability the pass

will succeed is prob[i][j]. (Assume that this information is given in the input.) As with all

probabilities, note that 0 ≤ prob[i][j] ≤ 1, for all 0 ≤ i < j ≤ n – 1.

We are allowed to choose any sequences of passes in order to move the ball from player 0 to player

n – 1. (This sequence will necessarily be some subsequence of 0, 1, 2, …, n – 1, since all the

players can only pass the ball in "one direction.") If all players act optimally, design an algorithm

that calculates the probability that player n – 1 successfully receives the ball.

6) Consider the following problem:

You have a set of n books with weights w1, w2, … , wn (in pounds). You must pack them into k

boxes. The capacity of each of these boxes (in pounds) is c1, c2, …, ck. Our goal is to determine

whether or not there exists a way to pack all of the n books in the k boxes without exceeding the

capacity of any of the boxes. Assume that all of the book weights are positive integers less than 50

and all of the box capacities are less than 200. Furthermore, assume that both n and k are less than

100.

A proposed solution to this problem is to set up a Network Flow graph. Each book would have a

vertex and each box would have one also. A source vertex, s, would be set up and a sink vertex t

would also be added to the graph. An edge from s to each book would be set up with the capacity

of that book. An edge from each book to each box would be set up with the capacity of the

corresponding book. Finally, an edge from each box would be set up to the sink with the capacity

equal to the maximum weight the box could handle. Determine the maximum flow of this network.

If it is equal to the sum of the weights of the books, the books can be packed. Otherwise they can

not be.

What is the flaw in this solution? Create a simple example that shows that this solution does NOT

work in all cases.

7) In the jumble problem, you are given a set of letters, in random order, and you have to determine

whether or not there exists a way to reorder those letters to form a valid word. One way to solve

this problem is to generate all permutations of the input letters and check each permutation against

a dictionary of words. Given that you have access to a function which tells you whether or not any

words start with a set of letters, (for example startswith(“jx”) would return false while

startswith(“po”) would return true), explain how you can solve the jumble problem using

backtracking. Furthermore, explain why this solution is more efficient than the permutation

solution.

8) The following list is a list of all the TV shows you want to watch and when they are on.

Determine the most number of shows you can watch, assuming that you can only watch one show

at a time and that when you watch a show, you watch it in its entirety. In doing so, utilize the

greedy algorithm shown in class and fill out your TV watching schedule. (Note: You may not use

all the slots given.)

Show Time Show Time Show Time

Idol 6:00-9:15pm Survivor 8:45-9:45pm 24 7:30-10:30pm

CSI 7:30-8:30pm Office 8:00-9:00pm Law&Order 9:50-10:50pm

Cops 6:30-7:30pm 30 Rock 7:00-9:00pm SportsCenter 9:15-11:00pm

