
Skip Lists 

 
This is yet another data structure that allows for inserts, 

searches and deletes in an average of O(log n) time, where n is 

the total number of items in the skip list. Interestingly enough, 

this data structure is realized with a mesh of linked lists. 

 

Unlike some of the other data structures we have looked at, a 

skip list uses randomization. Thus, if you give the exact same 

input to a skip list twice, you MAY actually get different 

behavior both times. (An example of an algorithm you have 

seen before that is randomized is Quick Sort when the 

partition element is picked randomly.) 

 

Skip List Definition 

A skip list consists of a series of lists {S0, S1, …, Sh}. The list S0 

starts with the special value - and continues with all the 

numbers in numerical order and is terminated by the special 

value +.  (Note: These two special values, - and + are 

always stored in the first and last nodes respectively of every 

list.) 

 

Each list Si stores a subset of the values stored in Si-1. You can 

visualize list Si to appear directly above list Si-1. Furthermore, 

each list will be connected to adjacent lists through vertical 

links between lists. In particular, if a value appears in both in 

Si and Si-1, then there will be a link between these two nodes. 

 

Finally, in Sh will only contain - and +. 

 

 

 

 

 



Here is a visual representation of a skip list: 

 

S4   -     ->       

           |           | 

S3   -   -> 3        

   |    |        | 

S2   -   -> 3 ->  12     ->  20->  

   |    |    |     |  | 

S1   - ->   1 -> 3->  8 ->  12     ->  20->  

   |    |   |  |   |     |  | 

S0   - ->   1->2-> 3->  8 ->9 -> 12->15  ->18   ->20->  

 

So how do we decide what elements get repeated in higher 

lists? 

 

Whenever we insert an element, we will first insert the element 

in the list S0. (Although it may look like it, this will NOT take 

(n) time.) Once this is done, we will randomly pick a real 

number in between 0 and 1. If it is greater than .5, we will copy 

this value in S1. This involved creating a new node, linking that 

new node to the node with the same value in S0, and then 

linking the node in between the two appropriate values in S1. 

Now, we will continue and create another random real number 

in between 0 and 1. If it is greater than .5 we’ll repeat this 

process for S2. We continue until we get a random number less 

than .5 and stop at that point. So, in the worst case, this 

algorithm could go forever, but technically speaking, the 

probability of that occurring is 0. 

 

So what does this do? 

 

It leaves about ½ as many nodes in Si as in Si-1. Thus, if the skip 

list is storing n values, there should roughly be n/2 values in S1. 

Using the repeated halving principle, we see that the expected 



“height” of the skip tree is logarithmic in n. In order to 

maintain a skip list, we will have to provide four operations for 

any node in the list in O(1) time. These are: 

 

1) after(p) 

2) before(p) 

3) below(p) 

4) above(p) 

 

The first two provide a way to navigate between elements in a 

list, and the last two provide a way to navigate between lists. In 

order to implement a skip list with these features, a connected 

mesh of nodes with four separate references would suffice. 

 

Searching 

We need to efficiently use the setup of each list to help us find a 

value. To solve this problem, consider searching in a Multi-way 

Tree. We will go through the list of values at a node until we 

have gone too far. When we have, we know to traverse the link 

“right before” the node that stored the value that was too big: 

 

    4,  10,  15,  25 

   /       |         |        |         \ 

       1, 3         5, 6,8   11    20,24    28, 30, 33, 35 

 

If we are searching for 23, we will look at 4, then 10, then 15. 

When we hit 25, we know if 23 is in the tree, it must be in the 

subtree to the right of the 15 and the left of the 25. Follow this 

link down. Now, after you look at the 20 and then the 24, you 

would search down the subtree to the right of 20 and left of 24, 

but this is null. Thus, the value isn’t in the tree. 

 

We will utilize this same idea in searching for a value in a skip 

list. 

 



S4   -     ->       

           |           | 

S3   -   -> 3        

   |    |        | 

S2   -   -> 3 ->  12     ->  20->  

   |    |    |     |  | 

S1   - ->   1 -> 3->  8 ->  12     ->  20->  

   |    |   |  |   |     |  | 

S0   - ->   1->2-> 3->  8 ->9 -> 12->15  ->18   ->20->  

 

Now, imagine searching for 18 in this skip list. First you start 

at the beginning of S4 and traverse down to S3 along the link of 

-. (This is because the next value in S4, , is too large.) Now, 

go to the 3 in S3. Since the next value in S3 is too big, follow the 

link down to 3 in S2. Continue along S2 to 12. Since 20 is too 

big, follow the link down to 12 in S1. The same thing occurs 

here and we go down to the node storing 12 in S0. At this point, 

since you are at the bottom of the list, continue forward until 

you find 18. If you pass over the value being searched in S0, 

then the value is not in the list. 

 

Insertion 

This works very similar to searching. Imagine searching for 

the value and getting to S0. Here you can find the correct 

location to insert the value. Once you insert this value in S0, 

continue by creating a random number and if necessary 

inserting the same number in S1, S2, etc. When doing this, all 

the necessary references must be updated. It can be shown that 

the extra amount of work done by this part of the algorithm 

(storing repeated nodes in higher lists) after a single insertion 

is O(1) time on average.  

 

To see this, note that the approximate number of physical 

nodes in the skip list will be (n + n/2 + n/4+ …+1) + 2logn ~ 



2(n+logn) using the sum of an infinite geometric series. (Note: 

the 2logn accounts for the - and + nodes in each of the 

approximately log n lists.) 

 

Removal 

Once again, implement the search procedure. In the book they 

make the search procedure go down all the way to S0, but this 

isn't entirely necessary. (The only situation this would be 

necessary is if you only stored entire records in S0 and just 

stored keys to those records in the list above. This idea has the 

potential of saving some space, but also is more complicated 

since you'd have a linked mesh structure with different types of 

nodes.) 

 

Instead, you will find a node in the highest list it appears first if 

you implement the search algorithm. (In order to stop the 

search algorithm at this point, change the pseudocode in the 

book to read "while (below(p) != null && key(p) != k)")) 

 

If you do this, you can simply delete each desired node, one by 

one until you've deleted the node storing the value to be deleted 

in S0. For example, if you were to remove 12, you would do the 

following steps: 

 

S4   -     ->       

           |           | 

S3   -   -> 3        

   |    |        | 

S2   -   -> 3 -> del this 1st  20->  

   |    |    |     |  | 

S1   - ->   1 -> 3->  8 ->    then this   20->  

   |    |   |  |   |     |  | 

S0   - ->   1->2-> 3->  8 ->9     finally 15  ->18   ->20->  

 



Maintaining the Top-most Level 

You must always have a reference to the top-most left-most 

node. (This is the - on list Sh.) One way to control this level is 

to fix the maximum height of the skip list based on the number 

of elements in the list. You could do something like max(10, 

2log n), where n is the number of elements stored. This keeps 

the height logarithmic. (Thus, if you inserted an element, and 

got 2log n consecutive random numbers over .5, which would 

indicate to "grow" a list beyond S2logn, you don't do it. In 

essence, when you get to the top row, you don't flip a coin to 

see if you will add a new row.) 

 

Or, you could simply allow the height of the tree to expand as 

inserted elements "build" towers. (Though it does seem silly to 

have a single tower that's more than one element taller than all 

the rest.) Either way, the expected amount of time for the three 

operations is O(log n). 

 



Bounding the height of a Skip List 

The probability that an element gets to Si upon insertion is 

(1/2)i. Given that there are n items in the list, the maximum 

probability that at least one of those items is on level is is n/2i. 

(To see this, consider the inclusion-exclusion principle for 

probability. We can simply add the probabilities of each of the 

events, but when we do this, we have "overcounted" by 

counting the probability that multiple items end up in Si 

several times. Thus, adding the probabilities as we have done is 

an overestimate of the actual probability, since the events are 

NOT mutually exclusive.) 

 

Thus, the height of the skip list does NOT exceed clogn with 

probability n/nc = 1/nc-1. The book plugs in c=3 to show that the 

probability of a skip list exceeding the height 3logn is at most 

1/n2. 

 

Analyzing Search Time in a Skip List 

Basically, each "move" in the search algorithm takes several 

steps down and several steps forward. The number of steps 

down is bounded by the height of the list, which is expected to 

be O(log n) as shown above. Now, we must calculate the 

expected number of forward steps.  

 

Note that each new element examined at level i of the list could 

not have existed in level i+1. This is because we drop levels in 

the skip list if we've "gone too far" in the level above. When we 

drop down, the new nodes we will traverse going forward will 

NOT be in the level above, because we would have stopped 

then. 

 

 

 

 

 



S4   -     ->       

           |           | 

S3   -   -> 3        

   |    |        | 

S2   -   -> 3 ->  12     ->  20->  

   |    |    |     |  | 

S1   - ->   1 -> 3->  8 ->  12     ->  20->  

   |    |   |  |   |     |  | 

S0   - ->   1->2-> 3->  8 ->9 -> 12->15  ->18   ->20->  

 

If we are searching for 8 above, we know that since 12 was too 

big in S2, it's not one of the new elements we'll see in S2. In 

particular, each of the underlined elements above denotes the 

"search ranges" for each list. We you drop down a list, you are 

confining yourself to the search region between adjacent 

elements in the list above. What is the expected number of 

elements on Si-1 in between adjacent elements from Si? Since an 

element is twice as likely to be in Si-1 as Si, the density of 

elements is twice as much. This would infer an average of one 

extra element in between two adjacent ones from the previous 

list. Certainly this value can be bounded by 2 new elements. 

Thus the number of elements searched in each level of the skip 

list is O(1). It follows that the expected search time in a skip list 

is O(log n), where the list stores n values. 

 

The expected number of physical nodes used in a skip list is at 

most 2n. Can you prove this?  

 


