
Skip Lists

This is yet another data structure that allows for inserts,

searches and deletes in an average of O(log n) time, where n is

the total number of items in the skip list. Interestingly enough,

this data structure is realized with a mesh of linked lists.

Unlike some of the other data structures we have looked at, a

skip list uses randomization. Thus, if you give the exact same

input to a skip list twice, you MAY actually get different

behavior both times. (An example of an algorithm you have

seen before that is randomized is Quick Sort when the

partition element is picked randomly.)

Skip List Definition

A skip list consists of a series of lists {S0, S1, …, Sh}. The list S0

starts with the special value - and continues with all the

numbers in numerical order and is terminated by the special

value +. (Note: These two special values, - and + are

always stored in the first and last nodes respectively of every

list.)

Each list Si stores a subset of the values stored in Si-1. You can

visualize list Si to appear directly above list Si-1. Furthermore,

each list will be connected to adjacent lists through vertical

links between lists. In particular, if a value appears in both in

Si and Si-1, then there will be a link between these two nodes.

Finally, in Sh will only contain - and +.

Here is a visual representation of a skip list:

S4 - -> 

 | |

S3 - -> 3 

 | | |

S2 - -> 3 -> 12 -> 20-> 

 | | | | |

S1 - -> 1 -> 3-> 8 -> 12 -> 20-> 

 | | | | | | |

S0 - -> 1->2-> 3-> 8 ->9 -> 12->15 ->18 ->20-> 

So how do we decide what elements get repeated in higher

lists?

Whenever we insert an element, we will first insert the element

in the list S0. (Although it may look like it, this will NOT take

(n) time.) Once this is done, we will randomly pick a real

number in between 0 and 1. If it is greater than .5, we will copy

this value in S1. This involved creating a new node, linking that

new node to the node with the same value in S0, and then

linking the node in between the two appropriate values in S1.

Now, we will continue and create another random real number

in between 0 and 1. If it is greater than .5 we’ll repeat this

process for S2. We continue until we get a random number less

than .5 and stop at that point. So, in the worst case, this

algorithm could go forever, but technically speaking, the

probability of that occurring is 0.

So what does this do?

It leaves about ½ as many nodes in Si as in Si-1. Thus, if the skip

list is storing n values, there should roughly be n/2 values in S1.

Using the repeated halving principle, we see that the expected

“height” of the skip tree is logarithmic in n. In order to

maintain a skip list, we will have to provide four operations for

any node in the list in O(1) time. These are:

1) after(p)

2) before(p)

3) below(p)

4) above(p)

The first two provide a way to navigate between elements in a

list, and the last two provide a way to navigate between lists. In

order to implement a skip list with these features, a connected

mesh of nodes with four separate references would suffice.

Searching

We need to efficiently use the setup of each list to help us find a

value. To solve this problem, consider searching in a Multi-way

Tree. We will go through the list of values at a node until we

have gone too far. When we have, we know to traverse the link

“right before” the node that stored the value that was too big:

 4, 10, 15, 25

 / | | | \

 1, 3 5, 6,8 11 20,24 28, 30, 33, 35

If we are searching for 23, we will look at 4, then 10, then 15.

When we hit 25, we know if 23 is in the tree, it must be in the

subtree to the right of the 15 and the left of the 25. Follow this

link down. Now, after you look at the 20 and then the 24, you

would search down the subtree to the right of 20 and left of 24,

but this is null. Thus, the value isn’t in the tree.

We will utilize this same idea in searching for a value in a skip

list.

S4 - -> 

 | |

S3 - -> 3 

 | | |

S2 - -> 3 -> 12 -> 20-> 

 | | | | |

S1 - -> 1 -> 3-> 8 -> 12 -> 20-> 

 | | | | | | |

S0 - -> 1->2-> 3-> 8 ->9 -> 12->15 ->18 ->20-> 

Now, imagine searching for 18 in this skip list. First you start

at the beginning of S4 and traverse down to S3 along the link of

-. (This is because the next value in S4, , is too large.) Now,

go to the 3 in S3. Since the next value in S3 is too big, follow the

link down to 3 in S2. Continue along S2 to 12. Since 20 is too

big, follow the link down to 12 in S1. The same thing occurs

here and we go down to the node storing 12 in S0. At this point,

since you are at the bottom of the list, continue forward until

you find 18. If you pass over the value being searched in S0,

then the value is not in the list.

Insertion

This works very similar to searching. Imagine searching for

the value and getting to S0. Here you can find the correct

location to insert the value. Once you insert this value in S0,

continue by creating a random number and if necessary

inserting the same number in S1, S2, etc. When doing this, all

the necessary references must be updated. It can be shown that

the extra amount of work done by this part of the algorithm

(storing repeated nodes in higher lists) after a single insertion

is O(1) time on average.

To see this, note that the approximate number of physical

nodes in the skip list will be (n + n/2 + n/4+ …+1) + 2logn ~

2(n+logn) using the sum of an infinite geometric series. (Note:

the 2logn accounts for the - and + nodes in each of the

approximately log n lists.)

Removal

Once again, implement the search procedure. In the book they

make the search procedure go down all the way to S0, but this

isn't entirely necessary. (The only situation this would be

necessary is if you only stored entire records in S0 and just

stored keys to those records in the list above. This idea has the

potential of saving some space, but also is more complicated

since you'd have a linked mesh structure with different types of

nodes.)

Instead, you will find a node in the highest list it appears first if

you implement the search algorithm. (In order to stop the

search algorithm at this point, change the pseudocode in the

book to read "while (below(p) != null && key(p) != k)"))

If you do this, you can simply delete each desired node, one by

one until you've deleted the node storing the value to be deleted

in S0. For example, if you were to remove 12, you would do the

following steps:

S4 - -> 

 | |

S3 - -> 3 

 | | |

S2 - -> 3 -> del this 1st 20-> 

 | | | | |

S1 - -> 1 -> 3-> 8 -> then this 20-> 

 | | | | | | |

S0 - -> 1->2-> 3-> 8 ->9 finally 15 ->18 ->20-> 

Maintaining the Top-most Level

You must always have a reference to the top-most left-most

node. (This is the - on list Sh.) One way to control this level is

to fix the maximum height of the skip list based on the number

of elements in the list. You could do something like max(10,

2log n), where n is the number of elements stored. This keeps

the height logarithmic. (Thus, if you inserted an element, and

got 2log n consecutive random numbers over .5, which would

indicate to "grow" a list beyond S2logn, you don't do it. In

essence, when you get to the top row, you don't flip a coin to

see if you will add a new row.)

Or, you could simply allow the height of the tree to expand as

inserted elements "build" towers. (Though it does seem silly to

have a single tower that's more than one element taller than all

the rest.) Either way, the expected amount of time for the three

operations is O(log n).

Bounding the height of a Skip List

The probability that an element gets to Si upon insertion is

(1/2)i. Given that there are n items in the list, the maximum

probability that at least one of those items is on level is is n/2i.

(To see this, consider the inclusion-exclusion principle for

probability. We can simply add the probabilities of each of the

events, but when we do this, we have "overcounted" by

counting the probability that multiple items end up in Si

several times. Thus, adding the probabilities as we have done is

an overestimate of the actual probability, since the events are

NOT mutually exclusive.)

Thus, the height of the skip list does NOT exceed clogn with

probability n/nc = 1/nc-1. The book plugs in c=3 to show that the

probability of a skip list exceeding the height 3logn is at most

1/n2.

Analyzing Search Time in a Skip List

Basically, each "move" in the search algorithm takes several

steps down and several steps forward. The number of steps

down is bounded by the height of the list, which is expected to

be O(log n) as shown above. Now, we must calculate the

expected number of forward steps.

Note that each new element examined at level i of the list could

not have existed in level i+1. This is because we drop levels in

the skip list if we've "gone too far" in the level above. When we

drop down, the new nodes we will traverse going forward will

NOT be in the level above, because we would have stopped

then.

S4 - -> 

 | |

S3 - -> 3 

 | | |

S2 - -> 3 -> 12 -> 20-> 

 | | | | |

S1 - -> 1 -> 3-> 8 -> 12 -> 20-> 

 | | | | | | |

S0 - -> 1->2-> 3-> 8 ->9 -> 12->15 ->18 ->20-> 

If we are searching for 8 above, we know that since 12 was too

big in S2, it's not one of the new elements we'll see in S2. In

particular, each of the underlined elements above denotes the

"search ranges" for each list. We you drop down a list, you are

confining yourself to the search region between adjacent

elements in the list above. What is the expected number of

elements on Si-1 in between adjacent elements from Si? Since an

element is twice as likely to be in Si-1 as Si, the density of

elements is twice as much. This would infer an average of one

extra element in between two adjacent ones from the previous

list. Certainly this value can be bounded by 2 new elements.

Thus the number of elements searched in each level of the skip

list is O(1). It follows that the expected search time in a skip list

is O(log n), where the list stores n values.

The expected number of physical nodes used in a skip list is at

most 2n. Can you prove this?

