String Matching via a Rolling Hash Function

The string matching problem is as follows:
Given a text string of length n , and a pattern to search for in the text of length m , determine the locations (if any), in the text that the pattern appears.

This, if we have:
text = SALLYSELLSSEASHELLSBYTHESEASHORT
pattern = SEA
then the algorithm should identify the two locations highlighted in yellow as containing the pattern.

The naïve brute force algorithm runs in $\mathrm{O}(\mathrm{nm})$ time. (In practice, it'll often be better, because many tries in matching up the pattern will fail on the first comparison, so the rest can be skipped.)

The Knuth-Morris-Pratt algorithm solves this problem in $\mathrm{O}(\mathrm{n}+\mathrm{m})$ time, but hashing can also do so (probabilistically), as well.

Here is the idea:
We define the hash of a string to be its base k value under mod p, where p is a large prime. (If the string is all uppercase letters, we could choose $\mathrm{k}=26$.) Thus, the hash value of SEA would be ('S' x $26^{2}+$ ' E ' x $26^{1}+$ 'A') mod p, where we map each letter to a value 0 to 25 .

Once we calculate the hash value of the pattern, all that is left to do is calculate the hash value of each substring of length m in the text. In this example, the first few are "SAL", "ALL", and "LLY". Any time a hash value is different, we have proof the substring in that location doesn't match. If the hash values are equal, then it's a potential match. (We could just check it out to make sure, to remove the probabilistic element.)

Notice that running a for loop to calculate this hash value for every substring doesn't save us any time since if we spent $O(\mathrm{~m})$ time calculating the hash for each substring, we still arrive at an $O(\mathrm{~nm})$ run time.

But notice that the hashvalue of "SAL" and "ALL" are related:
hash("SAL") $=\left({ }^{\prime} S\right.$ ' $\times 26^{2}+$ 'A' $\times 26^{1}+{ }^{\prime} L$ ') $\bmod p$
hash("ALL") $=\left({ }^{\prime} A\right.$ ' $\times 26^{2}+$ 'L' $\times 26^{1}+{ }^{\prime} L$ ') $\bmod p$
The portion in green is just the portion in yellow, multiplied by 26 . Thus, to calculate ALL's hash value, we need to do the following:

```
hash("ALL") \(=\left[26 \times\left({ }^{\prime} A^{\prime} \times 26^{1}+\right.\right.\) 'L') \(]+\) 'L'
    \(=\left[26 \times\left(h a s h(" S A L ")-' S ' \times 26^{2}\right)\right]+{ }^{\prime} L\) '
```

Thus, to "transition" from hash("SAL") to hash("ALL"), instead of computing hash("ALL") from scratch, we can subtract out the contribution of ' S ', then multiply this by 26 , finally, adding in the contribution of ' L '.

Though the savings aren't entirely apparent in this example, if the pattern string was longer, it should be easy to see that this computation is $\mathrm{O}(1)$ extra work, no matter how long the pattern is.

Thus, this brings down the run time to $\mathrm{O}(\mathrm{n}+\mathrm{m})$, as desired.
The code example HashExample.java provides one possible implementation.

