
Deletion in a Red-Black Tree 

 
Initially, we will delete a node just like we delete a node in a 

normal binary search tree. Here are the cases we will look at: 

 

1) Red leaf node 

2) Black node, with one red child node 

3) Black leaf node 

 

In the first case, the normal binary search tree delete is 

sufficient. Removing a red node does not change the black 

depths of any node, nor create a red child for any red node. 

 

In the second case, after we complete the binary search tree 

delete, we must simply recolor the child node of the deleted 

node to black. Changing this color adds one to the black depths 

of each node in the subtree of the deleted node, restoring the 

equality of the black depths of all external nodes. Also, 

changing a node to black does not violate any of the other Red-

Black Tree specifications. 

 

Neither of the strategies mentioned above are adequate for 

dealing with the third case. Instead, when we patch in the child 

of the deleted node in this case, in order to temporarily 

preserve the black depth property, we will color this child node 

a fictitious "double black" color.  

 

Before we discuss how to deal with "double black" nodes, let's 

real quickly justify why the cases above are the only cases we 

will deal with. First off, we will only delete nodes with 0 or 1 

child. Neither colored node can have one black child. If it did, 

the black height of the node's null child would not be proper. 

Further more, a red node can NOT have a red child. These 

observations narrow the cases to the situations listed above. 



The remaining cases with this "double black" node can be 

categorized as follows: 

 

1) The sibling of the "double black" node is black and has a 

red child. 

2) The sibling of the "double black" node is black and both 

children are black. 

3) The sibling of the "double black" node is red. 

 

(Note that initially, even though the double black node is a null 

node, after starting the recoloring/restructuring process, we 

may create a double black node that is NOT null.) 

 

To deal with each of these situations, let's first set up names for 

all of the important nodes: 

 

1) Let the child of the deleted node, which is colored "double 

black" be r. 

2) Let y be the sibling of r. 

3) Let z be a child of y, in each case, the specific child will be 

designated. 

4) Let x be the parent of y. 

 

 

 

Case 1: y is black and has a red child z. 

 

This case corresponds to the transfer operation in a 2-4 Tree 

delete. Take the nodes, x, y, and z and relabel them a, b, and c, 

in their inorder ordering. Place b where x used to be, and then 

have a and c be the left and right children of x, respectively. 

Color a and c black, and color b whatever color x USED to be. 

This eliminates the "double black" problem, so we can stop 

here. 

       



       x      y (x's color) 

     /    \           /      \ 

   rdb     y  =====>      x         z 

              \                                         / 

               z     r 

 

 

      

       x      z (x's color) 

     /    \           /      \ 

   rdb     y  =====>      x         y 

           /                                             / 

          z     r 

 

 

      

       x      z (x's color) 

     /    \           /      \ 

   y      rdb  =====>      y         x 

     \                                                                  \ 

      z                                 r 

 

      

       x      y (x's color) 

     /    \           /      \ 

   y      rdb  =====>      z         x 

  /                                                                    \ 

 z                                 r 

 

 

 

Notice how in each of these situations, we have been able to 

eliminate the double black node, but maintain the "black 

depth" of each external node in the tree. 

 



Case 2: y is black and both of its children are as well. 

 

This case corresponds to a fusion operation in a 2-4 Tree. We 

deal with this case by just recoloring, instead of making any 

structural changes to the tree. In particular, we will color r 

black, (changing it from "double black") and then color y red. 

What this does is subtract one from the black depth of every 

external node in the subtree of x. To compensate for this, we 

must change x from red to black. BUT, this only works if x was 

red to begin with!!! If it's not, to maintain the "black depth" at 

the external nodes in the subtree rooted at x, we must color x 

"double black." In essence, if this occurs, we have pushed the 

"double black" node up the tree, much like a fusion operation 

can propogate another fusion operation. 

 

       x       x  

     /    \           /      \ 

   rdb     y  =====>      r         y 

                    

       x      xdb  

     /    \            /    \ 

   rdb     y  =====>        r     y 

   

       x       x  

     /    \            /    \ 

   y      rdb  =====>        y     r 

     

       x      xdb  

     /    \             /    \ 

   y      rdb  =====>         y     r 

                                



Examples of Red-Black Tree Deletions 

 
The first case is an example of cases 1 and 2 w/o any double 

black nodes. It corresponds to deleting from a 3 or 4 node in a 

2-4 Tree. Delete either 13 or 15 from this Red-Black Tree: 

 

  6      6 

      /       \           /      \ 

      3     12         3      12 

     /    \         /    \ 

                   9     15       9 15(or 13) 

                          / 

                        13 

 

As mentioned in the beginning of the lecture, we simply do the 

normal binary search tree delete and color the child of the 

deleted node black. (If you delete 13, you don't need to do this.) 

 

The corresponding 2-4 Tree delete is as follows: 

 

 6, 12       6, 12 

      /     |      \            /    |     \ 

    3      9     13, 15         3     9    15 (or 13) 

 

Case 1: Double black node's sibling has a red child. 

Delete 20 from the tree below: 

 

 16       16 

        /     \             /      \ 

      8       24          8      24 

              /    \             /    \ 

       20   28                ndb   28 

                    /          / 

                  26              26 



In this case, label x as 24, y as 28, and z as 26. We want to 

rearrange these nodes so that 26 is at the root of this subtree 

and color it red, the old color of 24. Also, we will make the 

other two nodes black: 

 

 16        

       /       \              

      8        26      

               /    \      

             24   28 

     / 

           n 

 

The corresponding 2-4 Tree Delete (a transfer from an 

adjacent sibling) is as follows: 

 

 16,24     16, 26 

       /     |     \            /     |     \ 

     8     20    26, 28         8     24    28 

 

Case 2: Double black node's sibling has 2 black children 

Finally, let's look at an example from case 2, which includes a 

propagation of the double black. (You should be able to tell 

from this example in what situation the double black would 

NOT be propagated.) Delete 14 from the tree below. 

 

 11      11 

       /      \            /      \ 

     6        15         6       15 

   /   \      /    \        /  \       /  \  

  5   10  14   17      5   10  ndb  17 

 

 

This puts us in case 2, so we recolor r and its sibling black and 

red respectively, pushing a red up to the parent node with 15: 



 

11 

       /      \ 

     6        15db    

   /   \      /    \ 

  5   10  n   17 

 

Now, we have pushed the double black node up a level in the 

tree. We see this puts us in case 2 again: 

 

11db 

       /      \ 

     6        15    

   /   \      /    \ 

  5   10  n   17 

 

11 

       /      \ 

     6        15 

   /   \      /    \ 

  5   10  n   17 

 

There's no need to have a double black root. Just color it back 

to black since this will subtract one from the black height of 

each path. As you might imagine, this case corresponds to the 

one in the 2-4 Tree that fuses nodes and drops parent nodes 

into the fused nodes. If we leave an empty root, our 2-4 Tree 

height drops by one, as our black height in this case 

decrements by one as well. 

 

 

Now, let's look at the corresponding 2-4 Tree Delete: 

 11 

      /        \ 

    6         15  



  /   \       /   \ 

 5  10   14   17 

 

11 

      /        \ 

    6         15, fuse children of 15  

  /   \         / \ 

 5  10         17 

 

11 

      /        \ 

    6         15, drop 15 into child  

  /   \         | 

 5  10      17 

 

11 

      /        \ 

    6            , fuse 6 and child  

  /   \         | 

 5  10      15, 17 

 

11 

           |         

           6      , drop 11 into child  6, 11 

  /   \         |            /    |     \ 

 5  10      15, 17        5   10   15, 17 

 

and drop empty root node (~changing db root to black.) 


