
 

Probability 

 
The probability or likelihood of an event is defined as total 

number of successes (or frequency of an event occurring) 

divided by the sample space (or total number of possible times 

for the event to occur.) For example, the probability of rolling 

an even number on a standard six-sided die is 3/6 = ½ because 

there are six possible outcomes (1,2,3,4,5,6) of which three are 

even. It is IMPORTANT to note that each of the outcomes in 

the sample space MUST be equally probable for this definition 

to be valid. For example, if rolling a 1 was 5 times more likely 

than each of a 2, 3, 4, 5, or 6, then ½ would not be the answer 

to the question above. We can denote the probability of an 

event A occurring as p(A).  

 



Some probability rules: 

1) The sum of the probabilities of all events/outcomes 

occurring is always 1. (Each event/outcome must be 

disjoint.) 

 

2) The probability of any event is in between 0 and 1, 

inclusive. 

 

3) If two events A and B are disjoint, then the probability of 

either event occurring is the sum of the probability of A 

occurring and of B occurring. Symbolically, we have, if 

p(AB) = 0, then p(AB) = p(A)+p(B). 

 

4) If two events are independent, meaning that one event 

does not affect the probability of another occurring, such 

as two consecutive flips of a fair coin, then the probability 

of both occurring is the product of the probability of each 

occurring. Symbolically, p(AB) = p(A)p(B), for 

independent events A and B. 

 

5) A conditional probability, written as p(A|B) is defined as 

the probability of an event A occurring given that event B 

has occurred. p(A|B) = p(AB)/p(B). In essence, the 

numerator accounts for all events where both A and B 

occur, but the sample space has to be confined to the 

events where B occurs, or p(B). 

 

6) The inclusion-exclusion principle holds: p(AB) = 

p(A)+p(B) - p(AB). 

 

7) Bayes Law for conditional probabilities is p(A|B)= 

p(A)p(B|A)/p(B). This can be derived from the equations 

for Bayes Law. (p(A|B) = p(AB)/p(B) and p(B|A) = 

p(BA)/p(A).) 



Random Variables 
 

We can model events through random variables. A random 

variable is one that takes on various values with various 

probabilities. For example, a random variable X that models a 

die roll is one that is equal to 1, 1/6th of the time, 2 1/6th of the 

time, etc. Given a random variable X, we define its expected 

value as follows: 

 

E(X) =  xP(X=x), where the sum is over all possible values of 

the random X, and x is the index variable. For example, for a 

unbiased die roll, the expectation is 1/6(1+2+3+4+5+6) = 7/2. 

You can think of this as the probable average value of a die roll 

over a long string of die rolls. (The expected value of a random 

variable is it's average value.) 

 

There is a linearity of expectation, therefore, with random 

variables X and Y, we have E(X+Y) = E(X)+E(Y). 

Furthermore, if two events X and Y are independent, we have 

E(XY) = E(X)E(Y). For now, we will accept these results 

without proof. 

 

A good example here is the expected sum of rolling two dice. 

The expected sum of rolling one die is 7/2 as stated above. 

Thus, using the linearity of expectation and letting event X be 

the value of the first die roll and event Y be the value of the 

second die roll, we find: 

 

E(X+Y) = E(X) + E(Y) = 7/2+7/2 = 7. 

Also, we have E(XY) = E(X)E(Y) = 49/4. 

 



Consider this example from algorithm analysis that involves 

probability: 

 

We have discussed the best and worst case analysis of a binary 

search on n sorted items. Now, let’s do the average case 

analysis (assuming that the item is always in the array and to 

simplify things, I'll assume that n=2k - 1 for some integer k): 

 

Given an array of n items, the probability that the value is 

found on the first comparison is 1/n, assuming that each array 

element is equally likely to be searched for. 

 

If that first search is incorrect, then the probability of finding 

the element in the second comparison is 1/(floor(n/2)), since 

there are only floor(n/2), or 2k-1-1 elements left to search. 

 

Continuing with this logic the probability the element is found 

on the third comparison is 1/(n/22), etc. We know that the 

element MUST BE found on the log2n comparison, 

approximately. (This is the maximum number of steps in the 

binary search.) 

 

Now, let X be a random variable equal to the number of 

comparisons done in a binary search of an array with n sorted 

items. We have to solve for the expectation of X in terms of n to 

approximate the AVERAGE case running time of the binary 

search. We have: 

 

E(X) = 1[1/n] + 2[2/n] + 3[22/n]+... + k[2k-1/n] 

  

= [1(20) + 2(21) + 3(22) + ... + k(2k-1)]/n 

 

Now, this sum isn't anything we recognize, but consider the 

following technique: 

 



Let S = 1(20) + 2(21) + 3(22) + ... + k(2k-1) 

 

Now, multiply this equation by 2: 

 

     2S =        1(21) + 2(22) + ...  +(k-1)(2k-1) + k(2k) 

 

Now, subtract the second equation from the first: 

 

 -S=(20)+(21)+(22) + ... +(2k-1)  - k(2k) 

 

Solve for S: 

 

S = k(2k)-[20+21+22 + ... +2k-1] 

 

The sum to be subtracted from k(2k) is a geometric sequence, 

with the first term 1, and a common ratio of 2. Using the 

formula given in the book, we find: 

 

  S = k(2k)-(2k - 1)/(2-1) 

 

  S = k(2k)-2k + 1 

 

  S = (k-1)2k + 1 

 

  S = (n+1)[log2(n+1) - 1] + 1  

 

Plugging back into our equation for E(X), we have  

 

 E(X) = S/n = ((n+1)[log2(n+1) - 1] + 1)/n = (log2n),  

 

showing that the average case running time is proportional to 

log2n. 

 

 

 


