Network Flow

The network flow problem is as follows:

Given a connected directed graph G with non-negative integer weights, (where each edge stands for the capacity of that edge), and two distinguished vertices, s and t, called the source and the sink, such that the source only has out-edges and the sink only has in-edges, find the maximum amount of some commodity that can flow through the network from source to sink.

One way to imagine the situation is imagining each edge as a pipe that allows a certain flow of a liquid per second. The source is where the liquid is pouring from, and the sink is where it ends up. Each edge weight specifies the maximal amount of liquid that can flow through that pipe per second. Given that information, what is the most liquid that can flow from source to sink per second, in the steady state?

Here is an example:
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is the graph, and here is an example of a flow in the graph:
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In order for the assignment of flows to be valid, we must have the sum of flow coming into a vertex equal to the flow coming out of a vertex, for each vertex in the graph except the source and the sink. This is the conservation rule. Also, each flow must be less than or equal to the capacity of the edge. This is the capacity rule.

 The flow of the network is defined as the flow from the source, or into the sink. For the situation above, the network flow is 19. 

Cuts

A cut is a partition of vertices (Vs, Vt)  such that the s ( Vs and t ( Vt. An edge that goes from u to v is a forward edge if u( Vs and v ( Vt. If the opposite is true, then it is a backward edge. Also let F equal the flow of a network.

For any cut, define the flow across the cut to be the sum of the flows of the forward edges minus the sum of the flows of the backwards edges.

The flow across any cut equals the flow of a network.

In our previous example, the flow was 19. Consider the flow across the cut Vs = {s, a, b}. We have three forward edges with flows of 8, 4, and 15 and two backward edges with flows of 1 and 7. Summing, we have 8+4+15-1-7 = 19, as desired.

I will supplement the proof in the book by making the following observations:

1) The sum of the flows of all the vertices in Vs is the flow of the network because this sum is 0 for all non-source vertices in Vs, and equal to the flow at the source.

2) We need only to show that the flow NOT across Vs is 0. This is true simply because no edge in Vs leads into s. They all lead to each other. Thus, the net flow of all the edges within Vs is 0, because for two different vertices in Vs we add and subtract the same flow for an edge.

We can use this to show that the flow of a network can not exceed the capacity of any cut.

Simply put, our best case is if we don't have any backward edges with flow. In this case, we are simply left with forward edges, each with a particular capacity. The sum of these capacities is the capacity of the cut, and an upperbound on the flow of that cut.

Maximum Flow

We will use two ideas to help us determine whether or not a flow is maximum. Namely, we must show that absolutely no more flow could be added, no matter how we adjust each edge. The ideas we will look are residual capacity and augmenting paths.

The residual capacity of an edge from vertex u to vertex v is simply its unused capacity - the difference between its capacity and its flow in the direction of the edge. In the opposite direction (from v to u), this value is defined as the flow of the edge. 

Also, the residual capacity of a path is defined as the minimum of the residual capacities of the edges on that path. This particular value is the maximum excess flow we can push down that particular path. Thus, an augmenting path is defined as one where you have a path from the source to the sink where every edge has a non-zero residual capacity. Namely,

flow is less than capacity for each forward edge

flow is greater than 0 for each backwards edge

In our example below, consider the following path:

s -> a -> c -> b -> t

The forward edges on this path are sa, ac, and bt

The backward edge is cb.
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For sa we have 11/16, ac 0/10, bt 15/20

Finally for cb, we have 4/9.

Thus, the minimum residual capacity of the path is 4, which is the limit given to us by cb. Now, let's augment this path:
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         a -----> b

15   /   ^        ^ \ 19

    /  1 |           |     \

s         |          |7     t

, with edge b->c with no flow 

    \     | 4      |      /

  

8  \  v           |    / 4

        c ------>d

             11

Hopefully it should be clear that if we find an augmenting path, adding the minimal residual capacity of that path to each edge on that path yields another valid flow. In essence, what we are doing is simply adding some fluid to a particular path in the network. On a backwards edge, we are actually taking away fluid.

Now, we will show that if a flow network has no augmenting path, then it has a cut of maximum capacity.

If no augmenting path exists, then that means for all paths from source to sink, there is at least one edge without any residual capacity. Now, consider partitioning the vertices according to this rule: Place in Vs all vertices v that DO have augmenting paths from the source s. Then place all other vertices in Vt. (Note that the sink t must be in this set since there is no augmenting path to t.)

Now, consider all the edges with respect to this cut. Clearly, NONE of these edges have any residual capacity. If they did, then we would have added the vertex that they reach to the set Vs. Thus, for this particular cut, the flow at each forward edge is to its capacity and the flow at each backwards edge is 0. As we showed before, this situation represents the maximal flow possible.

Now, based upon the fact that augmenting paths can always be used to increase flow, and that the minimum capacity of a cut constrains the maximal flow, we can now claim the following:

The Max-Flow, Min-Cut Theorem: The value of the maximal flow in a flow network equals the value of the minimum cut.

With our example, we can see that there is no augmenting path from s to t. If there were, it would have to go through b and utilize edge bt. But all three edges leading to bt have no residual capacity.

Now, consider forming the set of vertices that do have augmenting paths from s. This set includes {s, a, c, d} As mentioned before, it is impossible to reach b on an augmenting path since all edges leading to b are at full capacity already.
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Now, if we look at this cut, we find that the maximal value of this cut is the sum of the capacities of the edges ab, db, and dt which is 12+7+4 = 23. (Notice that we did not add or subtract anything for edge bc with capacity 9, since it is a backwards edge.)

Ford-Fulkerson Algorithm

The Ford-Fulkerson Algorithm is a basic consequent of the work above. In its simplest form, we do the following:

While there exists an augmenting path


Add the appropriate flow to that augmenting path

We can check the existence of an augmenting path by doing a graph traversal on the network (with all full capacity edges removed.) This graph, a subgraph with all edges of full capacity removed is called a residual graph.

It is difficult to analyze the true running time of this algorithm because it is unclear exactly how many augmenting paths can be found in an arbitrary flow network. In the worst case, each augmenting path adds 1 to the flow of a network, and each search for an augmenting path takes O(E) time, where E is the number of edges in the graph. Thus, at worst-case, the algorithm takes O(|f|E) time, where |f| is the maximal flow of the network. 

The Edmonds-Karp Algorithm

This algorithm is a variation on the Ford-Fulkerson method which is intended to increase the speed of the first algorithm. The idea is to try to choose good augmenting paths. In this algorithm, the augmenting path suggested is the augmenting path with the minimal number of edges. (We can find this using BFS, since this finds all paths of a certain length before moving on to longer paths.) The total number of iterations of the algorithm using this strategy is O(VE). Thus, its total running time is O(VE2).

