
Shellsort 

 
Although this sort doesn't have the fastest running time of all 

the sorting algorithms, the idea behind it is simple, yet it is 

fairly competitive with Quick and Merge sort for fairly decent 

sized data sets. 

 

Here is the basic idea: 

 

Rather than sorting all the elements at once, sort a small set of 

them, maybe every 5th element or so. (You can do this using an 

insertion sort.) Do this for 5 different sets of elements. 

 

Then sort every 3rd element, etc. 

 

Finally sort all the elements using insertion sort. 

 

The rationale behind this sort is as follows: 

 

A small insertion sort is quite efficient. A larger insertion sort 

can be efficient if the elements are already "close" to sorted 

order. By doing the smaller insertion sorts, the elements do get 

closer in order before the larger insertion sorts are done. 

 

Here is an example of shell sort: 

 

12 4 3 9 18 7 2 17 13 1 5 6 

 

First let's do a 5-sort, meaning, let's sort every 5th element for 

the five groups of numbers. (The five groups are (12, 7, 5), (4, 

2, 6), (3, 17), (9, 13), and (18, 1).) Place the numbers in their 

sorted locations, thus, the 5, 7 and 12 go in locations 0, 5 and 

10. 

 



5 2 3 9 1 7 4 17 13 18 12  6 

 

 

 

Now, a 3-sort: 

 

4 1 3 5 2 6 9 12   7 18 17 13 

 

Finally a normal insertion sort will produce the sorted array: 

 

1 2 3 4 5 6 7  9   12 13 17 18 

 

Notice that by the time we do this last insertion sort, most 

elements don't have a long way to go before being inserted. 

 

So now the question becomes, do we always do a 5, 3 and 1 

sort? The answer is no. In general, we can see that shell sort 

will ALWAYS work as long as the last "pass" is a 1-sort. 

 

The important question is, how do we space out the previous 

sorts. In particular, we'll call h1, h2, h3, ht, an increment 

sequence. For shellsort, first we will sort every ht values using 

insertion sort, then every ht-1 values and so on...until we at last 

sort every h1 values. (We must have h1=1 as previously 

mentioned.) 

 

What tends to work well is if each of the values in the 

increment sequence are in a geometric series. A good example 

would be 1, 2, 4, 8, 16, etc. Thus, if we were sorting 1000 values, 

our first sort may be a 256-sort. (Followed by a 128 sort, a 64 

sort, etc.) Notice how quickly these initial "passes" will run. 

Generally, they will be O(n) time. As time goes on, they will be 

a bit slower, but not nearly as slow as the original insertion 

sort. In practice, it turns out that a geometric ratio of 2.2 

produces the best results. (Roughly this would correspond to 



the gap sequence 1, 2, 5, 11, etc.) The actual average case 

analysis of this sort is too difficult. (Our textbook states that 

experimental results indicate an average running time of 

O(n1.25).) 



A lower bound for sorts which swap adjacent 

elements only 

 
An inversion in a list of numbers is a pair of numbers that are 

out of order relative to each other. 

 

For example, in the list 7, 2, 9, 5, 4, the inversions are the 

following pairs: (7, 2), (7, 5), (7, 4), (9, 5), (9, 4), and (5,4). (Note 

that two elements can be inverted even if they are not adjacent 

to one another.) 

 

Several sorts, such as insertion sort, only swap adjacent 

elements. 

 

A key observation about any such sort is that in a single swap, 

only one inversion is eliminated, since all inversions with 

values outside the swap with the two values in the swap are 

maintained. (For example, if we swap 5 and 9 above, the 

inversion with 7 and 5 is still there.) A second observation is 

that a sorted list has no inversions. Putting these two facts 

together, we find that any such sorting algorithm in the 

category above, must have a minimum run-time proportional 

to the number of inversions in an unsorted list of numbers. 

 

In a completely random list of n distinct numbers, the 

probability that any pair has an inversion is 0.5. There are a 

total of (n choose 2) pairs of values in a list of n distinct 

numbers. Thus, the average number of inversions in a random 

list of n distinct numbers is )(
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It follows that the average case run-time of all of these 

algorithms is )( 2n . 



A lower time bound for comparison based sorting 

 
Given an input of n numbers to sort, they could be arranged in 

n! different orders. Clearly, for each of those n! cases, a sorting 

algorithm MUST "act" differently. In particular, if a sorting 

algorithm makes a certain number of comparisons, when 

running to each of these n! inputs, no two will give the same 

exact results for every comparison. (If they did, could you sort 

those two different data sets differently?) 

 

Thus, we must make enough comparisons, in any comparison 

based sorting algorithm to distinguish between all n! inputs. A 

single comparison can distinguish between 2 separate inputs. 

(Because either an element is greater than the other, or less 

than the other. For the moment we are assuming distinct 

elements.) In general, k comparisons can distinguish between 

at most 2k inputs. To see this, imagine making a chart like so: 

 

Input a[1]>a[2] a[1]>a[3] a[2]>a[3], ... a[n-2]>a[n-1] 

2,1,4,3 T  F  F   T 

2,3,1,4 F  T  T   F 

4,3,2,1 T  T  T   T 

 

As you can see, if there are k columns in the chart, each with 2 

possible answers, there are a total of 2k possible distinct rows 

that could be on the chart. If two distinct inputs gave rise to the 

same EXACT row of answers, it would be impossible for our 

sorting algorithm to distinguish between the two inputs. Thus, 

if a sorting algorithm is to work, each input NEEDS to lead to 

a distinct row of answers. 

 

 

 

 



This leads us to the equation: 

 

2k > n! 

 

We need to find the smallest value of k which satisfies 

this equation above. Using logarithms we find this value 

to be log2n! 

 

Now, what is this value equal to approximately? It turns 

out that n! > (n/e)n. So we find that 

 

2k > n! > (n/e)n 

 

log2(2
k) > log2(n/e)n 

k > n(log2n - log2e) 

k > nlog2n - nlog2e > nlog2n - 2n = (nlog2n). 

 

Thus, we have shown that it is necessary to make at 

least (nlog2n) comparisons to sort n values in a purely 

comparison based sorting algorithm. 



Bucket Sort 

 
Although no comparison sort is faster than O(nlgn), if we do 

assume some information about the input that allows us to sort 

with extra information (not just comparisons), we can indeed 

improve our sorting time to O(n). (Clearly we can not do any 

better asymptotically because we must "look" at every number 

at least once to guarantee that the output list is sorted.) 

 

In Bucket Sort, we will assume that the input values are 

randomly distributed in a range [0, N). (Our book says the 

values have to be integers, but the sort as well as the analysis 

will still work if we only assume that the values being sorted 

are real.) 

 

Assume that we have n values to sort. We will create n 

different buckets to hold all the values. We can implement each 

bucket with a linked list. Each bucket will store values within a 

range of N/n. 

 

Perhaps the easiest way to get a grasp of the algorithm is to go 

through an example: 

 

Consider sorting a list of 10 numbers known to be in between 0 

and 2, not including 2 itself. Thus, each bucket will store values 

in a range of 2/10 = .2 In particular, we have the following list: 

 

Bucket Range of Values Bucket Range of Values 

--------- --------------------- --------- --------------------- 

0  [0, .2)   5  [1, 1.2) 

1  [.2, .4)   6  [1.2, 1.4) 

2  [.4, .6)   7  [1.4, 1.6) 

3  [.6, .8)   8  [1.6, 1.8) 

4  [.8, 1)   9  [1.8, 2) 



Consider sorting the following list: 1.3, 0.7, 0.1, 1.8, 1.1, 1.0, 

0.5, 1.7, 0.3, and 1.5. Here is a picture of what happens during 

the sort. Based upon this, imagine how one would write code to 

implement this sort. (The data structure to use would be an 

array of linked lists.) 

 

Also, consider that it is not necessary for the input range to 

start at 0. As long as you have both a lower and upper bound 

for input, the bucket sort algorithm can be adapted.  

 

Given that the range of inputs is [L, L+N), (where L stands for 

lowest possible value, and N stands for the range), and there 

are n values to be sorted, if we are given the value v, our first 

goal is to determine WHICH linked list to insert the value into. 

Once we do that, then we can simply call our linked list insert 

method to insert a value into a linked list in sorted order. 

 

The correct array index is floor(n(v - L)/N), using integer 

division. To see this, consider that the value v-L is from the 

range [0, N). Now, we must map this to the correct array index 

from 0 to n-1. Each array index has a range of N/n values. 

Thus, what we want to do is divide our value v-L by the range 

of each bucket to give us the array index of the appropriate 

bucket. For example, using our previous list, if we were to sort 

1.3, it would go to the bucket floor(10(1.3 - 0)/2) = 6 as desired. 

 

Although I will skip the mathematics as to why this sort is 

O(n), I will give you the intuition as to why that is the case. 

Since we have as many buckets and values to sort, IF the 

values to sort are randomly distributed, then the length of each 

linked list will be constant with very high probability. Each 

insert in a constant sized linked list will take constant time, just 

the total amount of time for the sort will be linear in the 

number of items to sort. 

 



Counting Sort 

 
In counting sort, each of the values being sorted are in the 

range from 0 to m, inclusive.  Here is the algorithm for sorting 

an array a[0],...,a[n-1]: 

 

1) Create an auxiliary c, indexed from c[0] to c[m] and 

initialize each value in the array to 0. 

2) Run through the input array a, tabulating the number of 

occurrences of each value 0 through m by adding 1 to the value 

stored in the appropriate index in c. (Thus, c is a frequency 

array.) 

3) Run through the array c, a second time so that the value 

stored in each array slot represents the number of elements 

less than or equal to the index value in the original array a. 

4) Now, run through the original input array a, and for each 

value in a, use the auxiliary array c to tell you the proper 

placement of that value in the sorted input, which will be 

stored in a new array b[0]..b[n-1]. 

5) Copy the sorted array from b to a. 

 



Consider the following example: 

 

index 0 1 2 3 4 5 6 7 

A 3 6 4 1 3 4 1 4 

 

First create the frequency array: 

 

index 0 1 2 3 4 5 6 

C 0 2 0 2 3 0 1 

 

Now, to change C so that each array element stores the number 

of values less than or equal to the given index minus one, run 

the following loop: 

 

C[0]--; 

for i=1 to m 

   C[i] = C[i] + C[i-1] 

 

After this loop C loops like 

 

index 0 1 2 3 4 5 6 

C -1 1 1 3 6 6 7 

 



Now, to place A[7] in its sorted place in the new array B, 

simply look at what is stored in C[A[7]]. This is 6, which means 

that 4 ought to be placed in array index 6 of B. Also, we must 

decrement C[4] so that the next time we place another 4 in the 

array, it gets placed in a new location. Here are the changes to 

both B and C after placing A[8]: 

 

 

 

index 0 1 2 3 4 5 6 7 

B       4  

 

 

index 0 1 2 3 4 5 6 

C -1 1 1 3 5 6 7 

 

Now, let's trace through the rest of this example... 

 

Note that we go backwards through the array so that this sort 

is a stable sort. (What this means is that ties in the original 

input stay in the same relative order after being sorted. 

Namely, the last 4 in the input will be in array index 7 of the 

output, the second to last 4 in the input will be in array index 6 

of the output, and the 4 in array index 3 of the input will be 

placed in index 5 of the output.) 

 

One other thing to note, after arriving at the frequency array, 

we might say, "why didn't the text just loop through each 

index in C and place each corresponding number in the array 

A directly. (ie. Since C[1] = 1 originally, why not just place a 1 

in A[0] and A[1] and move on...) The reason is that these 

numbers may have associated data with them, and in this latter 

approach, we wouldn't be placing that associated data with the 

numbers. The previous approach allows for this. 

 



 

Radix Sort 

 
The input to this sort must be non-negative integers all of a 

fixed length of digits. Let each number be k digits long. The 

sort works as follows: 

 

1) Sort the values using a O(n) stable sort on the kth most 

significant digit. 

2) Decrement k by 1 

3) Repeat step 1. (Unless k=0, then you're done.) 

 

Once again, this sort is much more easily understood with a 

demonstration. The running time of this sort should be O(nk), 

since we do k stable sorts that each run in O(n) time. 

 

Depending on how many digits the numbers are, this sort can 

be more efficient than any O(nlgn) sort, depending on the 

range of values. 

 

A stable sort is one where if two values being sorted, say vi and 

vj are equal, and vi comes before vj in the unsorted list, then vi 

will STILL come before vj in the sorted list.  

 

This sort does seem quite counter intuitive. One question to 

ask: would it work the other way around (namely from most 

significant to least significant digit)? If not, could we adapt the 

sort to work the other way around? Why does this always 

work? Why does the intermediate sort need to be stable? 

 

The key to it is as follows: After the mth iteration, the values 

are sorted in order with respect to the m least significant digits. 

Clearly, when m=k, this means the list is just plain sorted! 

 



 

Here is an illustration of Radix sort: 

 

unsorted       

-----------        v       v               v 

235  162  628  162 

162  734  734  175 

734  674  235  235 

175  235  237  237 

237  175  162  628 

674  237  674  674 

628  628  175  734 

 

The second column is sorted by the units digit, the third by the 

tens digit and the last column by the hundreds digit. Notice 

how each sort is stable, (when there are ties, the order of the 

elements is NOT switched. Only in this case is correctness 

guaranteed.) 


