
Shellsort

Although this sort doesn't have the fastest running time of all

the sorting algorithms, the idea behind it is simple, yet it is

fairly competitive with Quick and Merge sort for fairly decent

sized data sets.

Here is the basic idea:

Rather than sorting all the elements at once, sort a small set of

them, maybe every 5th element or so. (You can do this using an

insertion sort.) Do this for 5 different sets of elements.

Then sort every 3rd element, etc.

Finally sort all the elements using insertion sort.

The rationale behind this sort is as follows:

A small insertion sort is quite efficient. A larger insertion sort

can be efficient if the elements are already "close" to sorted

order. By doing the smaller insertion sorts, the elements do get

closer in order before the larger insertion sorts are done.

Here is an example of shell sort:

12 4 3 9 18 7 2 17 13 1 5 6

First let's do a 5-sort, meaning, let's sort every 5th element for

the five groups of numbers. (The five groups are (12, 7, 5), (4,

2, 6), (3, 17), (9, 13), and (18, 1).) Place the numbers in their

sorted locations, thus, the 5, 7 and 12 go in locations 0, 5 and

10.

5 2 3 9 1 7 4 17 13 18 12 6

Now, a 3-sort:

4 1 3 5 2 6 9 12 7 18 17 13

Finally a normal insertion sort will produce the sorted array:

1 2 3 4 5 6 7 9 12 13 17 18

Notice that by the time we do this last insertion sort, most

elements don't have a long way to go before being inserted.

So now the question becomes, do we always do a 5, 3 and 1

sort? The answer is no. In general, we can see that shell sort

will ALWAYS work as long as the last "pass" is a 1-sort.

The important question is, how do we space out the previous

sorts. In particular, we'll call h1, h2, h3, ht, an increment

sequence. For shellsort, first we will sort every ht values using

insertion sort, then every ht-1 values and so on...until we at last

sort every h1 values. (We must have h1=1 as previously

mentioned.)

What tends to work well is if each of the values in the

increment sequence are in a geometric series. A good example

would be 1, 2, 4, 8, 16, etc. Thus, if we were sorting 1000 values,

our first sort may be a 256-sort. (Followed by a 128 sort, a 64

sort, etc.) Notice how quickly these initial "passes" will run.

Generally, they will be O(n) time. As time goes on, they will be

a bit slower, but not nearly as slow as the original insertion

sort. In practice, it turns out that a geometric ratio of 2.2

produces the best results. (Roughly this would correspond to

the gap sequence 1, 2, 5, 11, etc.) The actual average case

analysis of this sort is too difficult. (Our textbook states that

experimental results indicate an average running time of

O(n1.25).)

A lower bound for sorts which swap adjacent

elements only

An inversion in a list of numbers is a pair of numbers that are

out of order relative to each other.

For example, in the list 7, 2, 9, 5, 4, the inversions are the

following pairs: (7, 2), (7, 5), (7, 4), (9, 5), (9, 4), and (5,4). (Note

that two elements can be inverted even if they are not adjacent

to one another.)

Several sorts, such as insertion sort, only swap adjacent

elements.

A key observation about any such sort is that in a single swap,

only one inversion is eliminated, since all inversions with

values outside the swap with the two values in the swap are

maintained. (For example, if we swap 5 and 9 above, the

inversion with 7 and 5 is still there.) A second observation is

that a sorted list has no inversions. Putting these two facts

together, we find that any such sorting algorithm in the

category above, must have a minimum run-time proportional

to the number of inversions in an unsorted list of numbers.

In a completely random list of n distinct numbers, the

probability that any pair has an inversion is 0.5. There are a

total of (n choose 2) pairs of values in a list of n distinct

numbers. Thus, the average number of inversions in a random

list of n distinct numbers is)(
2

)1(

22

1 2n
nnn












.

It follows that the average case run-time of all of these

algorithms is)(2n .

A lower time bound for comparison based sorting

Given an input of n numbers to sort, they could be arranged in

n! different orders. Clearly, for each of those n! cases, a sorting

algorithm MUST "act" differently. In particular, if a sorting

algorithm makes a certain number of comparisons, when

running to each of these n! inputs, no two will give the same

exact results for every comparison. (If they did, could you sort

those two different data sets differently?)

Thus, we must make enough comparisons, in any comparison

based sorting algorithm to distinguish between all n! inputs. A

single comparison can distinguish between 2 separate inputs.

(Because either an element is greater than the other, or less

than the other. For the moment we are assuming distinct

elements.) In general, k comparisons can distinguish between

at most 2k inputs. To see this, imagine making a chart like so:

Input a[1]>a[2] a[1]>a[3] a[2]>a[3], ... a[n-2]>a[n-1]

2,1,4,3 T F F T

2,3,1,4 F T T F

4,3,2,1 T T T T

As you can see, if there are k columns in the chart, each with 2

possible answers, there are a total of 2k possible distinct rows

that could be on the chart. If two distinct inputs gave rise to the

same EXACT row of answers, it would be impossible for our

sorting algorithm to distinguish between the two inputs. Thus,

if a sorting algorithm is to work, each input NEEDS to lead to

a distinct row of answers.

This leads us to the equation:

2k > n!

We need to find the smallest value of k which satisfies

this equation above. Using logarithms we find this value

to be log2n!

Now, what is this value equal to approximately? It turns

out that n! > (n/e)n. So we find that

2k > n! > (n/e)n

log2(2
k) > log2(n/e)n

k > n(log2n - log2e)

k > nlog2n - nlog2e > nlog2n - 2n = (nlog2n).

Thus, we have shown that it is necessary to make at

least (nlog2n) comparisons to sort n values in a purely

comparison based sorting algorithm.

Bucket Sort

Although no comparison sort is faster than O(nlgn), if we do

assume some information about the input that allows us to sort

with extra information (not just comparisons), we can indeed

improve our sorting time to O(n). (Clearly we can not do any

better asymptotically because we must "look" at every number

at least once to guarantee that the output list is sorted.)

In Bucket Sort, we will assume that the input values are

randomly distributed in a range [0, N). (Our book says the

values have to be integers, but the sort as well as the analysis

will still work if we only assume that the values being sorted

are real.)

Assume that we have n values to sort. We will create n

different buckets to hold all the values. We can implement each

bucket with a linked list. Each bucket will store values within a

range of N/n.

Perhaps the easiest way to get a grasp of the algorithm is to go

through an example:

Consider sorting a list of 10 numbers known to be in between 0

and 2, not including 2 itself. Thus, each bucket will store values

in a range of 2/10 = .2 In particular, we have the following list:

Bucket Range of Values Bucket Range of Values

--------- --------------------- --------- ---------------------

0 [0, .2) 5 [1, 1.2)

1 [.2, .4) 6 [1.2, 1.4)

2 [.4, .6) 7 [1.4, 1.6)

3 [.6, .8) 8 [1.6, 1.8)

4 [.8, 1) 9 [1.8, 2)

Consider sorting the following list: 1.3, 0.7, 0.1, 1.8, 1.1, 1.0,

0.5, 1.7, 0.3, and 1.5. Here is a picture of what happens during

the sort. Based upon this, imagine how one would write code to

implement this sort. (The data structure to use would be an

array of linked lists.)

Also, consider that it is not necessary for the input range to

start at 0. As long as you have both a lower and upper bound

for input, the bucket sort algorithm can be adapted.

Given that the range of inputs is [L, L+N), (where L stands for

lowest possible value, and N stands for the range), and there

are n values to be sorted, if we are given the value v, our first

goal is to determine WHICH linked list to insert the value into.

Once we do that, then we can simply call our linked list insert

method to insert a value into a linked list in sorted order.

The correct array index is floor(n(v - L)/N), using integer

division. To see this, consider that the value v-L is from the

range [0, N). Now, we must map this to the correct array index

from 0 to n-1. Each array index has a range of N/n values.

Thus, what we want to do is divide our value v-L by the range

of each bucket to give us the array index of the appropriate

bucket. For example, using our previous list, if we were to sort

1.3, it would go to the bucket floor(10(1.3 - 0)/2) = 6 as desired.

Although I will skip the mathematics as to why this sort is

O(n), I will give you the intuition as to why that is the case.

Since we have as many buckets and values to sort, IF the

values to sort are randomly distributed, then the length of each

linked list will be constant with very high probability. Each

insert in a constant sized linked list will take constant time, just

the total amount of time for the sort will be linear in the

number of items to sort.

Counting Sort

In counting sort, each of the values being sorted are in the

range from 0 to m, inclusive. Here is the algorithm for sorting

an array a[0],...,a[n-1]:

1) Create an auxiliary c, indexed from c[0] to c[m] and

initialize each value in the array to 0.

2) Run through the input array a, tabulating the number of

occurrences of each value 0 through m by adding 1 to the value

stored in the appropriate index in c. (Thus, c is a frequency

array.)

3) Run through the array c, a second time so that the value

stored in each array slot represents the number of elements

less than or equal to the index value in the original array a.

4) Now, run through the original input array a, and for each

value in a, use the auxiliary array c to tell you the proper

placement of that value in the sorted input, which will be

stored in a new array b[0]..b[n-1].

5) Copy the sorted array from b to a.

Consider the following example:

index 0 1 2 3 4 5 6 7

A 3 6 4 1 3 4 1 4

First create the frequency array:

index 0 1 2 3 4 5 6

C 0 2 0 2 3 0 1

Now, to change C so that each array element stores the number

of values less than or equal to the given index minus one, run

the following loop:

C[0]--;

for i=1 to m

 C[i] = C[i] + C[i-1]

After this loop C loops like

index 0 1 2 3 4 5 6

C -1 1 1 3 6 6 7

Now, to place A[7] in its sorted place in the new array B,

simply look at what is stored in C[A[7]]. This is 6, which means

that 4 ought to be placed in array index 6 of B. Also, we must

decrement C[4] so that the next time we place another 4 in the

array, it gets placed in a new location. Here are the changes to

both B and C after placing A[8]:

index 0 1 2 3 4 5 6 7

B 4

index 0 1 2 3 4 5 6

C -1 1 1 3 5 6 7

Now, let's trace through the rest of this example...

Note that we go backwards through the array so that this sort

is a stable sort. (What this means is that ties in the original

input stay in the same relative order after being sorted.

Namely, the last 4 in the input will be in array index 7 of the

output, the second to last 4 in the input will be in array index 6

of the output, and the 4 in array index 3 of the input will be

placed in index 5 of the output.)

One other thing to note, after arriving at the frequency array,

we might say, "why didn't the text just loop through each

index in C and place each corresponding number in the array

A directly. (ie. Since C[1] = 1 originally, why not just place a 1

in A[0] and A[1] and move on...) The reason is that these

numbers may have associated data with them, and in this latter

approach, we wouldn't be placing that associated data with the

numbers. The previous approach allows for this.

Radix Sort

The input to this sort must be non-negative integers all of a

fixed length of digits. Let each number be k digits long. The

sort works as follows:

1) Sort the values using a O(n) stable sort on the kth most

significant digit.

2) Decrement k by 1

3) Repeat step 1. (Unless k=0, then you're done.)

Once again, this sort is much more easily understood with a

demonstration. The running time of this sort should be O(nk),

since we do k stable sorts that each run in O(n) time.

Depending on how many digits the numbers are, this sort can

be more efficient than any O(nlgn) sort, depending on the

range of values.

A stable sort is one where if two values being sorted, say vi and

vj are equal, and vi comes before vj in the unsorted list, then vi

will STILL come before vj in the sorted list.

This sort does seem quite counter intuitive. One question to

ask: would it work the other way around (namely from most

significant to least significant digit)? If not, could we adapt the

sort to work the other way around? Why does this always

work? Why does the intermediate sort need to be stable?

The key to it is as follows: After the mth iteration, the values

are sorted in order with respect to the m least significant digits.

Clearly, when m=k, this means the list is just plain sorted!

Here is an illustration of Radix sort:

unsorted

----------- v v v

235 162 628 162

162 734 734 175

734 674 235 235

175 235 237 237

237 175 162 628

674 237 674 674

628 628 175 734

The second column is sorted by the units digit, the third by the

tens digit and the last column by the hundreds digit. Notice

how each sort is stable, (when there are ties, the order of the

elements is NOT switched. Only in this case is correctness

guaranteed.)

