
Minimum Spanning Trees 

 
In this lecture we will explore the problem of finding a 

minimum spanning tree in an undirected weighted graph (if 

one exists). First let's define a tree, a spanning tree, and a 

minimum spanning tree: 

 

tree: A connected graph without cycles. (A cycle is a path that 

starts and ends at the same vertex.) 

 

spanning tree: a subtree of a graph that includes each vertex of 

the graph. A subtree of a given graph as a subset of the 

components of that given graph. (Naturally, these components 

must form a graph as well. Thus, if your subgraph can't just 

have vertices A and B, but contain an edge connecting vertices 

B and C.) 

 

Minimum spanning tree: This is only defined for weighted 

graphs. This is the spanning tree of a given graph whose sum 

of edge weights is minimum, compared to all other spanning 

trees. 



Crucial Fact about Minimum Spanning Trees 

 
Let G be a graph with vertices in the set V partitioned into two 

sets V1 and V2. Then the minimum weight edge, e,  that 

connects a vertex from V1 to V2 is part of a minimum spanning 

tree of G. 

 

Proof: Consider a MST T of G that does NOT contain the 

minimum weight edge e. This MUST have at least one edge in 

between a vertex from V1 to V2. (Otherwise, no vertices 

between those two sets would be connected.) Let G contain 

edge f that connects V1 to V2. Now, add in edge e to T. This 

creates a cycle. In particular, there was already one path from 

every vertex in V1 to V2 and with the addition of e, there are 

two. Thus, we can form a cycle involving both e and f. Now, 

imagine removing f from this cycle. This new graph, T' is also a 

spanning tree, but it's total weight is less than or equal to T 

because we replaced e with f, and e was the minimum weight 

edge. 

 

Each of the algorithms we will present works because of this 

theorem above. 

 

Each of these algorithms is greedy as well, because we make 

the "greedy" choice in selecting an edge for our MST before 

considering all edges. 

 

 

 

 

 

 

 

 



Kruskal's Algorithm 

 
The algorithm is executed as follows: 

 

Let V =  

For i=1 to n-1, (where there are n vertices in a graph) 

 V = V  e, where e is the edge with the minimum edge 

        weight not already in V, and that does NOT 

    form a cycle when added to V. 

Return V 

 

Basically, you build the MST of the graph by continually 

adding in the smallest weighted edge into the MST that doesn't 

form a cycle. When you are done, you'll have an MST. You 

HAVE to make sure you never add an edge the forms a cycle 

and that you always add the minimum of ALL the edges left 

that don't.  

 

The reason this works is that each added edge is connecting 

between two sets of vertices, and since we select the edges in 

order by weight, we are always selecting the minimum edge 

weight that connects the two sets of vertices. 

 

In order to do cycle detection here, one idea is to keep track of 

all the separate clusters of vertices. Initially, each vertex is in 

its own cluster. For each edge added, you are merging two 

clusters together. Indicate this by changing a variable that 

stores the cluster ID values of a vertex to be the same as every 

other vertex in the cluster. An edge can NOT be added in 

between two vertices within the same cluster.  

 

 

 



Carefully analyzing this description shows that a Disjoint Set 

precisely provides the necessary functionality. Initially, each 

set in the disjoint set keeps track of each of the connected 

components as we're building the MST. If two vertices are 

already connected, they will be in the same exact set in the 

Disjoint Set. Alternatively, if they aren't connected, this 

represents an edge we can add to connect two disjoint trees 

that is safe to add to our minimum spanning tree. 

 

 



Prim's Algorithm 

 
This is quite similar to Kruskal's with one big difference: 

 

The tree that you are "growing" ALWAYS stays connected. 

Whereas in Kruskal's you could add an edge to your growing 

tree that wasn't connected to the rest of it, here you can NOT 

do it. 

 

Here is the algorithm: 

 

1) Set S = . 

1) Pick any vertex in the graph. 

2) Add the minimum edge incident to that vertex to S. 

3) Continue to add edges into S (n-2 more times) using the 

     following rule: 

 

     Add the minimum edge weight to S that is incident to S 

     but that doesn't form a cycle when added to S. 

 

Once again, this works directly because of the theorem 

discussed before. In particular, the set you are growing is the 

partition of vertices and each edge you add is the smallest edge 

connecting that set to its complement. 

 

For cycle detection, note that at each iteration, you must add 

exactly one vertex into the subgraph represented by the edges 

in S. (You can think of "growing" the tree as successively 

adding vertices that are connected instead of adding edges.) 

Thus, we can just keep a boolean array of storing which 

vertices have been used and required that the edge that we add 

into the tree has exactly one vertex that hasn't been visited yet. 


