
Minimum Spanning Trees

In this lecture we will explore the problem of finding a

minimum spanning tree in an undirected weighted graph (if

one exists). First let's define a tree, a spanning tree, and a

minimum spanning tree:

tree: A connected graph without cycles. (A cycle is a path that

starts and ends at the same vertex.)

spanning tree: a subtree of a graph that includes each vertex of

the graph. A subtree of a given graph as a subset of the

components of that given graph. (Naturally, these components

must form a graph as well. Thus, if your subgraph can't just

have vertices A and B, but contain an edge connecting vertices

B and C.)

Minimum spanning tree: This is only defined for weighted

graphs. This is the spanning tree of a given graph whose sum

of edge weights is minimum, compared to all other spanning

trees.

Crucial Fact about Minimum Spanning Trees

Let G be a graph with vertices in the set V partitioned into two

sets V1 and V2. Then the minimum weight edge, e, that

connects a vertex from V1 to V2 is part of a minimum spanning

tree of G.

Proof: Consider a MST T of G that does NOT contain the

minimum weight edge e. This MUST have at least one edge in

between a vertex from V1 to V2. (Otherwise, no vertices

between those two sets would be connected.) Let G contain

edge f that connects V1 to V2. Now, add in edge e to T. This

creates a cycle. In particular, there was already one path from

every vertex in V1 to V2 and with the addition of e, there are

two. Thus, we can form a cycle involving both e and f. Now,

imagine removing f from this cycle. This new graph, T' is also a

spanning tree, but it's total weight is less than or equal to T

because we replaced e with f, and e was the minimum weight

edge.

Each of the algorithms we will present works because of this

theorem above.

Each of these algorithms is greedy as well, because we make

the "greedy" choice in selecting an edge for our MST before

considering all edges.

Kruskal's Algorithm

The algorithm is executed as follows:

Let V = 

For i=1 to n-1, (where there are n vertices in a graph)

 V = V  e, where e is the edge with the minimum edge

 weight not already in V, and that does NOT

 form a cycle when added to V.

Return V

Basically, you build the MST of the graph by continually

adding in the smallest weighted edge into the MST that doesn't

form a cycle. When you are done, you'll have an MST. You

HAVE to make sure you never add an edge the forms a cycle

and that you always add the minimum of ALL the edges left

that don't.

The reason this works is that each added edge is connecting

between two sets of vertices, and since we select the edges in

order by weight, we are always selecting the minimum edge

weight that connects the two sets of vertices.

In order to do cycle detection here, one idea is to keep track of

all the separate clusters of vertices. Initially, each vertex is in

its own cluster. For each edge added, you are merging two

clusters together. Indicate this by changing a variable that

stores the cluster ID values of a vertex to be the same as every

other vertex in the cluster. An edge can NOT be added in

between two vertices within the same cluster.

Carefully analyzing this description shows that a Disjoint Set

precisely provides the necessary functionality. Initially, each

set in the disjoint set keeps track of each of the connected

components as we're building the MST. If two vertices are

already connected, they will be in the same exact set in the

Disjoint Set. Alternatively, if they aren't connected, this

represents an edge we can add to connect two disjoint trees

that is safe to add to our minimum spanning tree.

Prim's Algorithm

This is quite similar to Kruskal's with one big difference:

The tree that you are "growing" ALWAYS stays connected.

Whereas in Kruskal's you could add an edge to your growing

tree that wasn't connected to the rest of it, here you can NOT

do it.

Here is the algorithm:

1) Set S = .

1) Pick any vertex in the graph.

2) Add the minimum edge incident to that vertex to S.

3) Continue to add edges into S (n-2 more times) using the

 following rule:

 Add the minimum edge weight to S that is incident to S

 but that doesn't form a cycle when added to S.

Once again, this works directly because of the theorem

discussed before. In particular, the set you are growing is the

partition of vertices and each edge you add is the smallest edge

connecting that set to its complement.

For cycle detection, note that at each iteration, you must add

exactly one vertex into the subgraph represented by the edges

in S. (You can think of "growing" the tree as successively

adding vertices that are connected instead of adding edges.)

Thus, we can just keep a boolean array of storing which

vertices have been used and required that the edge that we add

into the tree has exactly one vertex that hasn't been visited yet.

