
Huffman Coding

The idea behind Huffman coding is to find a way to compress

the storage of data using variable length codes. Our standard

model of storing data uses fixed length codes. For example,

each character in a text file is stored using 8 bits. There are

certain advantages to this system. When reading a file, we

know to ALWAYS read 8 bits at a time to read a single

character. But as you might imagine, this coding scheme is

inefficient. The reason for this is that some characters are

more frequently used than other characters. Let's say that the

character 'e' is used 10 times more frequently than the

character 'q'. It would then be advantageous for us to use a 7

bit code for e and a 9 bit code for q instead because that could

shorten our overall message length.

Huffman coding finds the optimal way to take advantage of

varying character frequencies in a particular file. On average,

using Huffman coding on standard files can shrink them

anywhere from 10% to 30% depending to the character

distribution. (The more skewed the distribution, the better

Huffman coding will do.)

The idea behind the coding is to give less frequent characters

and groups of characters longer codes. Also, the coding is

constructed in such a way that no two constructed codes are

prefixes of each other. This property about the code is crucial

with respect to easily deciphering the code.

Building a Huffman Tree

The easiest way to see how this algorithm works is to work

through an example. Let's assume that after scanning a file we

find the following character frequencies:

Character Frequency

'a' 12

'b' 2

'c' 7

'd' 13

'e' 14

'f' 85

Now, create a binary tree for each character that also stores

the frequency with which it occurs.

The algorithm is as follows: Find the two binary trees in the list

that store minimum frequencies at their nodes. Connect these

two nodes at a newly created common node that will store NO

character but will store the sum of the frequencies of all the

nodes connected below it. So our picture looks like follows:

 9 12 'a' 13 'd' 14 'e' 85 'f'

 / \

 2 'b' 7 'c'

Now, repeat this process until only one tree is left:

 21

 / \

 9 12 'a' 13 'd' 14 'e' 85 'f'

 / \

 2 'b' 7 'c'

 21 27

 / \ / \

 9 12 'a' 13 'd' 14 'e' 85 'f'

 / \

 2 'b' 7 'c'

 48

 / \

 21 27

 / \ / \

 9 12 'a' 13 'd' 14 'e' 85 'f'

 / \

 2 'b' 7 'c'

 133

 / \

 48 85 'f'

 / \

 21 27

 / \ / \

 9 12 'a' 13 'd' 14 'e'

 / \

 2 'b' 7 'c'

Once the tree is built, each leaf node corresponds to a letter

with a code. To determine the code for a particular node, walk

a standard search path from the root to the leaf node in

question. For each step to the left, append a 0 to the code and

for each step right append a 1. Thus for the tree above we get

the following codes:

Letter Code

'a' 001

'b' 0000

'c' 0001

'd' 010

'e' 011

'f' 1

Why are we guaranteed that one code is NOT the prefix of

another?

Find a set of valid Huffman codes for a file with the given

character frequencies:

Character Frequency

'a' 15

'b' 7

'c' 5

'd' 23

'e' 17

'f' 19

Calculating Bits Saved

All we need to do for this calculation is figure out how many

bits are originally used to store the data and subtract from that

how many bits are used to store the data using the Huffman

code.

In the first example given, since we have six characters, let's

assume each is stored with a three bit code. Since there are 133

such characters, the total number of bits used is 3*133 = 399.

Now, using the Huffman coding frequencies we can calculate

the new total number of bits used:

Letter Code Frequency Total Bits

'a' 001 12 36

'b' 0000 2 8

'c' 0001 7 28

'd' 010 13 39

'e' 011 14 42

'f' 1 85 85

Total 238

Thus, we saved 399 - 238 = 161 bits, or nearly 40% storage

space. Of course there is a small detail we haven't taken into

account here. What is that?

Huffman Coding is an Optimal Prefix Code

Of all prefix codes for a file, Huffman coding produces an

optimal one. In all of our examples from class on Monday, we

found that Huffman coding saved us a fair percentage of

storage space. But, we can show that no other prefix code can

do better than Huffman coding.

First, we will show the following:

Let x and y be two characters with the least frequencies in a

file. Then there exists an optimal prefix code for C in which the

codewords for x and y have the same length and differ only in

the last bit.

Here is how we will prove this:

Assume that a tree T stores an optimal prefix code. Let and

characters a and b be sibling nodes stored at the maximum

depth of the tree. We will show that we can create T' with x

and y as siblings at the lowest depth of the tree such that the

number of bits used for the coding with T' is the same as with

T. (Let f(a) denote the frequency of the character a. Without

loss of generality, assume f(x) f(y) and f(a) f(b). It also

follows that f(x) f(a) and f(y) f(b). Let h be the height of the

tree T. Let x have a depth of dx in T and y have a depth of dx in

T.)

Create T' as follows: swap the nodes storing a and x, and then

swap the nodes storing b and y. Now, we have that the depth of

x and y in T' is h, the depth of a is dx and the depth of b is dy in

T'.

Now, let's calculate the change in the number of bits used for

the coding with tree T' with the coding in tree T. (Note: Since

all other codes remain unchanged, we only need to analyze the

total number of bits it takes to code a, b, x and y.)

bits for tree T (for a,b,x and y) = hf(a) + hf(b) + dxf(x) dyf(y)

bits for tree T' (for a, b, x, and y) = dxf(a) + dyf(b) + hf(x) +

hf(y).

Difference =

hf(a) + hf(b) + dxf(x) dyf(y) - (dxf(a) + dyf(b) + hf(x) + hf(y)) =

hf(a) + hf(b) + dxf(x) dyf(y) - dxf(a) - dyf*b) - hf(x) - hf(y) =

h(f(a) - f(x)) + h(f(b)-f(y)) + dx(f(x) - f(a)) + dy(f(y) - f(b)) =

h(f(a) - f(x)) + h(f(b)-f(y)) - dx(f(a) - f(x)) - dy(f(b) - f(y)) =

(h - dx)(f(a) - f(x)) + (h - dy)(f(b) - f(y))

Notice that all four of the terms above must be non-negative

since we know that h dx, h dy, f(a) f(x), and f(b) f(y).

Thus, it follows that this difference must be 0. Thus, the

number of bits to used in a code where x and y (the two

characters with lowest frequency) are siblings at maximum

depth of the coding tree is optimal.

In layman's terms, give me what you think is an optimal

coding tree, and I can create a new one from it with the two

nodes corresponding to low frequencies at the bottom of the

tree.

To complete the proof, you'll notice that by construction,

Huffman coding ALWAYS makes sure that the nodes with the

lowest frequencies are at the bottom of the coding tree, all the

way through the construction. (You can't find any pair of

nodes for which this isn't true.) Technically, to carry out the

proof, you'd use induction, but we'll skip that for now...

