
Huffman Coding 

 
The idea behind Huffman coding is to find a way to compress 

the storage of data using variable length codes. Our standard 

model of storing data uses fixed length codes. For example, 

each character in a text file is stored using 8 bits. There are 

certain advantages to this system. When reading a file, we 

know to ALWAYS read 8 bits at a time to read a single 

character. But as you might imagine, this coding scheme is 

inefficient. The reason for this is that some characters are 

more frequently used than other characters. Let's say that the 

character 'e' is used 10 times more frequently than the 

character 'q'. It would then be advantageous for us to use a 7 

bit code for e and a 9 bit code for q instead because that could 

shorten our overall message length. 

 

Huffman coding finds the optimal way to take advantage of 

varying character frequencies in a particular file. On average, 

using Huffman coding on standard files can shrink them 

anywhere from 10% to 30% depending to the character 

distribution. (The more skewed the distribution, the better 

Huffman coding will do.) 

 

The idea behind the coding is to give less frequent characters 

and groups of characters longer codes. Also, the coding is 

constructed in such a way that no two constructed codes are 

prefixes of each other. This property about the code is crucial 

with respect to easily deciphering the code. 

 

 

 

 

 

 



Building a Huffman Tree 

 
The easiest way to see how this algorithm works is to work 

through an example. Let's assume that after scanning a file we 

find the following character frequencies: 

 

Character  Frequency 

'a'   12 

'b'   2 

'c'   7 

'd'   13 

'e'   14 

'f'   85 

 

Now, create a binary tree for each character that also stores 

the frequency with which it occurs. 

 

The algorithm is as follows: Find the two binary trees in the list 

that store minimum frequencies at their nodes. Connect these 

two nodes at a newly created common node that will store NO 

character but will store the sum of the frequencies of all the 

nodes connected below it. So our picture looks like follows: 

 

 

 9  12 'a' 13 'd' 14 'e' 85 'f' 

       /    \ 

    2 'b'  7 'c' 

 

 

 

 

 

 

 



Now, repeat this process until only one tree is left: 

 

             21 

           /    \ 

        9     12 'a' 13 'd' 14 'e' 85 'f' 

       /    \ 

    2 'b'  7 'c' 

 

 

             21            27 

           /    \                  /      \ 

        9     12 'a' 13 'd'    14 'e'  85 'f' 

       /    \ 

    2 'b'  7 'c' 

 

                         48 

                  /               \ 

             21            27 

           /    \                  /      \ 

        9     12 'a' 13 'd'    14 'e'  85 'f' 

       /    \ 

    2 'b'  7 'c' 

 

            133 

          /       \ 

                         48  85 'f' 

                  /               \ 

             21            27 

           /    \                  /      \ 

        9     12 'a' 13 'd'    14 'e'   

       /    \ 

    2 'b'  7 'c' 

 

Once the tree is built, each leaf node corresponds to a letter 

with a code. To determine the code for a particular node, walk 



a standard search path from the root to the leaf node in 

question. For each step to the left, append a 0 to the code and 

for each step right append a 1. Thus for the tree above we get 

the following codes: 

 

Letter  Code 

'a'   001 

'b'   0000 

'c'   0001 

'd'   010 

'e'   011 

'f'   1 

 

Why are we guaranteed that one code is NOT the prefix of 

another? 

 

Find a set of valid Huffman codes for a file with the given 

character frequencies: 

 

 

Character  Frequency 

'a'   15 

'b'   7 

'c'   5 

'd'   23 

'e'   17 

'f'   19 

 

 

 

 

 

 

 



Calculating Bits Saved 

 
All we need to do for this calculation is figure out how many 

bits are originally used to store the data and subtract from that 

how many bits are used to store the data using the Huffman 

code. 

 

In the first example given, since we have six characters, let's 

assume each is stored with a three bit code. Since there are 133 

such characters, the total number of bits used is 3*133 = 399. 

 

Now, using the Huffman coding frequencies we can calculate 

the new total number of bits used: 

 

Letter  Code  Frequency Total Bits 

'a'   001  12   36 

'b'   0000  2   8 

'c'   0001  7   28 

'd'   010  13   39 

'e'   011  14   42 

'f'   1  85   85 

Total       238 

 

Thus, we saved 399 - 238 = 161 bits, or nearly 40% storage 

space. Of course there is a small detail we haven't taken into 

account here. What is that? 

 

 

 

 

 

 

 

 



Huffman Coding is an Optimal Prefix Code 

 
Of all prefix codes for a file, Huffman coding produces an 

optimal one. In all of our examples from class on Monday, we 

found that Huffman coding saved us a fair percentage of 

storage space. But, we can show that no other prefix code can 

do better than Huffman coding. 

 

First, we will show the following: 

 

Let x and y be two characters with the least frequencies in a 

file. Then there exists an optimal prefix code for C in which the 

codewords for x and y have the same length and differ only in 

the last bit. 

 

Here is how we will prove this: 

 

Assume that a tree T stores an optimal prefix code. Let and 

characters a and b be sibling nodes stored at the maximum 

depth of the tree. We will show that we can create T' with x 

and y as siblings at the lowest depth of the tree such that the 

number of bits used for the coding with T' is the same as with 

T. (Let f(a) denote the frequency of the character a. Without 

loss of generality, assume f(x)  f(y) and f(a)  f(b). It also 

follows that f(x)  f(a) and f(y)  f(b). Let h be the height of the 

tree T. Let x have a depth of dx in T and y have a depth of dx in 

T.) 

 

Create T' as follows: swap the nodes storing a and x, and then 

swap the nodes storing b and y. Now, we have that the depth of 

x and y in T' is h, the depth of a is dx and the depth of b is dy in 

T'. 

 



Now, let's calculate the change in the number of bits used for 

the coding with tree T' with the coding in tree T. (Note: Since 

all other codes remain unchanged, we only need to analyze the 

total number of bits it takes to code a, b, x and y.) 

 

# bits for tree T (for a,b,x and y) = hf(a) + hf(b) + dxf(x)  dyf(y) 

 

# bits for tree T' (for a, b, x, and y) = dxf(a) + dyf(b) + hf(x) + 

hf(y). 

 

Difference = 

 

hf(a) + hf(b) + dxf(x)  dyf(y) - (dxf(a) + dyf(b) + hf(x) + hf(y)) = 

 

hf(a) + hf(b) + dxf(x)  dyf(y) - dxf(a) - dyf*b) - hf(x) - hf(y) = 

 

h(f(a) - f(x)) + h(f(b)-f(y)) + dx(f(x) - f(a)) + dy(f(y) - f(b)) = 

 

h(f(a) - f(x)) + h(f(b)-f(y)) - dx(f(a) - f(x)) - dy(f(b) - f(y)) = 

 

(h - dx)(f(a) - f(x)) + (h - dy)(f(b) - f(y)) 

 

Notice that all four of the terms above must be non-negative 

since we know that h  dx, h  dy, f(a)  f(x), and f(b)  f(y). 

Thus, it follows that this difference must be 0. Thus, the 

number of bits to used in a code where x and y (the two 

characters with lowest frequency) are siblings at maximum 

depth of the coding tree is optimal. 

 

In layman's terms, give me what you think is an optimal 

coding tree, and I can create a new one from it with the two 

nodes corresponding to low frequencies at the bottom of the 

tree. 

 

 



To complete the proof, you'll notice that by construction, 

Huffman coding ALWAYS makes sure that the nodes with the 

lowest frequencies are at the bottom of the coding tree, all the 

way through the construction. (You can't find any pair of 

nodes for which this isn't true.) Technically, to carry out the 

proof, you'd use induction, but we'll skip that for now... 


