
Greedy Algorithms 

 
A greedy algorithm is one where you take the step that seems 

the best at the time while executing the algorithm. 

 

Previous Examples: Huffman coding, Minimum Spanning 

Tree Algorithms 

 

Coin Changing 

The goal here is to give change with the minimal number of 

coins as possible for a certain number of cents using 1 cent, 5 

cent, 10 cent, and 25 cent coins. 

 

The greedy algorithm is to keep on giving as many coins of the 

largest denomination until you the value that remains to be 

given is less than the value of that denomination. Then you 

continue to the lower denomination and repeat until you've 

given out the correct change. 

 

This is the algorithm a cashier typically uses when giving out 

change. The text proves that this algorithm is optimal for coins 

of 1, 5 and 10. They use strong induction using base cases of 

the number of cents being 1, 2, 3, 4, 5, and 10. Another way to 

prove this algorithm works is as follows: Consider all 

combinations of giving change, ordered from highest 

denomination to lowest. Thus, two ways of making change for 

25 cents are 1) 10, 10, 1, 1, 1, 1, 1 and 2) 10, 5, 5, 5. The key is 

that each larger denomination is divisible by each smaller one. 

Because of this, for all listings, we can always make a mapping 

for each coin in one list to a coin or set of coins in the other list. 

For our example, we have: 

 

10  10  1 1 1 1 1 1 1 1 1 1 

10  5  5  5  5 



 

Think about why the divisibility implies that we can make such 

a mapping. 

 

Now, notice that the greedy algorithm leads to a combination 

that always maps one coin to one or more coins in other 

combinations and NEVER maps more than one coin to a single 

coin in another combination. Thus, the number of coins given 

by the greedy algorithm is minimal. 

 

This argument doesn't work for any set of coins w/o the 

divisibility rule. As an example, consider 1, 6 and 10 as 

denominations. There is no way to match up these two ways of 

producing 30 cents: 

 

10 10 10 

6 6 6 6 6 

 

In general, we'll run into this problem with matching any 

denominations where one doesn't divide into the other evenly. 

 

In order to show that our system works with 25 cents, an 

inductive proof with more cases than the one in the text is 

necessary. (Basically, even though a 10 doesn't divide into 25, 

there are no values, multiples of 25, for which it's 

advantageous to give a set of dimes over a set of quarters.) 



Single Room Scheduling Problem 

Given a single room to schedule, and a list of requests, the goal 

of this problem is to maximize the total number of events 

scheduled. Each request simply consists of the group, a start 

time and an end time during the day. 

 

Here's the greedy solution: 

 

1) Sort the requests by finish time. 

2) Go through the requests in order of finish time, scheduling 

them in the room if the room is unoccupied at its start time. 

 

Now, we will prove that this algorithm does indeed maximize 

the number of events scheduled using proof by contradiction. 

 

Let S be the schedule determined by the algorithm above. Let S 

schedule k events. We will assume to the contrary, that there 

exists a schedule S' that has at least k+1 events scheduled. 

 

We know that S finishes its first event at or before S'. (This is 

because S always schedules the first event to finish. S' can 

either schedule that one, or another one that ends later.) Thus, 

initially, S is at or ahead of S' since it has finished as many or 

more tasks than S' at that particular moment. (Let this 

moment be t1. In general, let ti be the time at which S completes 

its ith scheduled event. Also, let t'
i be the time at which S' 

completes its ith scheduled event.) 

We know that  

 

1) t'
1   t1 

2) t'
k+1 < tk+1 since S' ended up scheduling at least k+1 events. 

 

Thus there must exists a minimal value m for which 

 

t'
m < tm and this value is greater than 1, and at most k+1. 



 

(Essentially, S' is at or behind S from the beginning and will 

catch up and pass S at some point...) 

 

Since m is minimal, we know that 

 

t'
m-1  tm-1. 

 

But, we know that the mth event schedule by S ends AFTER 

the mth event scheduled by S'. This contradicts the nature of 

the algorithm used to construct S. Since t'
m-1  tm-1, we know 

that S will pick the first event to finish that starts after time tm-

1. BUT, S' was forced to also pick some event that starts after 

tm-1. Since S picks the fastest finishing event, it's impossible for 

this choice to end AFTER S' choice, which is just as restricted. 

This contradicts our deduction that t'
m < tm. Thus, it must be 

the case that our initial assumption is wrong, proving S to be 

optimal. 



Multiple Room Scheduling (in text) 

Given a set of requests with start and end times, the goal here 

is to schedule all events using the minimal number of rooms. 

Once again, a greedy algorithm will suffice: 

 

1) Sort all the requests by start time. 

2) Schedule each event in any available empty room. If no 

room is available, schedule the event in a new room. 

 

We can also prove that this is optimal as follows: 

 

Let k be the number of rooms this algorithm uses for 

scheduling. When the kth room is scheduled, it MUST have 

been the case that all k-1 rooms before it were in use. At the 

exact point in time that the k room gets scheduled, we have k 

simultaneously running events. It's impossible for any schedule 

to handle this type of situation with less than k rooms. Thus, 

the given algorithm minimizes the total number of rooms used. 

 

Fractional Knapsack Problem 

Your goal is to maximize the value of a knapsack that can hold 

at most W units worth of goods from a list of items I1,  I2,  ... In. 

Each item has two attributes: 

 

1) A value/unit; let this be vi for item Ii. 

2) Weight available; let this be wi for item Ii. 

 

The algorithm is as follows: 

 

1) Sort the items by value/unit. 

2) Take as much as you can of the most expensive item left, 

moving down the sorted list. You may end up taking a 

fractional portion of the "last" item you take. 

Consider the following example: 

 



There are 4 lbs. of I1 available with a value of $50/lb. 

There are 40 lbs. of I2 available with a value of $30/lb. 

There are 25 lbs. of I3 available with a value of $40/lb. 

 

The knapsack holds 50 lbs. 

 

You will do the following: 

 

1) Take 4 lbs of I1. 

2) Take 25 lbs. of I3. 

3) Tale 21 lbs. of I2.  

 

Value of knapsack = 4*50 + 25*40 + 21*30 = $1830. 

 

Why is this maximal? Because if we were to exchange any good 

from the knapsack with what was left over, it is IMPOSSIBLE 

to make an exchange of equal weight such that the knapsack 

gains value. The reason for this is that all the items left have a 

value/lb. that is less than or equal to the value/lb. of ALL the 

material currently in the knapsack. At best, the trade would 

leave the value of the knapsack unchanged. Thus, this 

algorithm produces the maximal valued knapsack. 



Containers Problem 

The full text of the problem is here: 

 
http://www.cs.ucf.edu/~dmarino/ucf/cop3503/extraprogs/Greedy-Containers/containers.pdf 

 

The gist of the problem is that you're given a sequence of 

containers arriving at a shipping port and must arrange them 

into stacks. Each container has a letter label and you can only 

place a container on top of another container if its letter is 

equal to or comes before letter of the container you are placing 

it upon. The goal of the problem is to minimize the number of 

stacks you form. 

 

We would never need more than 26 stacks, of course (one per 

letter). Here is a greedy algorithm that solves the problem: 

 

1) Process the containers as they come. 

 

2) Whenever a container comes, put it on top of the stack with 

the earliest possible letter. If no such stack exists, make a new 

stack. 

  

For example, if you get an 'M' and the current top of the stacks 

are 'B', 'K', 'N', 'Q' and 'Y', place the 'M' on top of the stack 

with the 'N' on top. After doing so, the new tops of the stacks 

will be ('B', 'K', 'M', 'Q', 'Y'). 

 

The reason for the optimality of this algorithm is the exchange 

argument. In the example above, consider placing the 'M' on 

either the 'Q' or 'Y'. This would yield the two following tops of 

stacks: 

 

'B', 'K', 'N', 'M', 'Y' 

'B', 'K', 'N', 'Q', 'M' 

 



Sorting these alphabetically, we get: 

 

'B', 'K', 'M', 'N', 'Y' 

'B', 'K', 'M', 'N', 'Q' 

 

When we compare this to the algorithm's set: 

 

'B', 'K', 'M' 'Q', 'Y' 

 

We see that the algorithm's set of stacks can handle ANY new 

letter equally or better than the other two stacks. In short, 

there is more freedom to place future letters in this 

configuration. This is easy to see because the algorithm's set of 

stacks shares four (all but one) letter with its two alternatives. 

The letter not shared leaves more freedom for the algorithm's 

set of stacks. 

 

Note: One interesting side tidbit is that there are quite a few 

short and different ways to code solutions to this problem! 

 

 


