
Greedy Algorithms

A greedy algorithm is one where you take the step that seems

the best at the time while executing the algorithm.

Previous Examples: Huffman coding, Minimum Spanning

Tree Algorithms

Coin Changing

The goal here is to give change with the minimal number of

coins as possible for a certain number of cents using 1 cent, 5

cent, 10 cent, and 25 cent coins.

The greedy algorithm is to keep on giving as many coins of the

largest denomination until you the value that remains to be

given is less than the value of that denomination. Then you

continue to the lower denomination and repeat until you've

given out the correct change.

This is the algorithm a cashier typically uses when giving out

change. The text proves that this algorithm is optimal for coins

of 1, 5 and 10. They use strong induction using base cases of

the number of cents being 1, 2, 3, 4, 5, and 10. Another way to

prove this algorithm works is as follows: Consider all

combinations of giving change, ordered from highest

denomination to lowest. Thus, two ways of making change for

25 cents are 1) 10, 10, 1, 1, 1, 1, 1 and 2) 10, 5, 5, 5. The key is

that each larger denomination is divisible by each smaller one.

Because of this, for all listings, we can always make a mapping

for each coin in one list to a coin or set of coins in the other list.

For our example, we have:

10 10 1 1 1 1 1 1 1 1 1 1

10 5 5 5 5

Think about why the divisibility implies that we can make such

a mapping.

Now, notice that the greedy algorithm leads to a combination

that always maps one coin to one or more coins in other

combinations and NEVER maps more than one coin to a single

coin in another combination. Thus, the number of coins given

by the greedy algorithm is minimal.

This argument doesn't work for any set of coins w/o the

divisibility rule. As an example, consider 1, 6 and 10 as

denominations. There is no way to match up these two ways of

producing 30 cents:

10 10 10

6 6 6 6 6

In general, we'll run into this problem with matching any

denominations where one doesn't divide into the other evenly.

In order to show that our system works with 25 cents, an

inductive proof with more cases than the one in the text is

necessary. (Basically, even though a 10 doesn't divide into 25,

there are no values, multiples of 25, for which it's

advantageous to give a set of dimes over a set of quarters.)

Single Room Scheduling Problem

Given a single room to schedule, and a list of requests, the goal

of this problem is to maximize the total number of events

scheduled. Each request simply consists of the group, a start

time and an end time during the day.

Here's the greedy solution:

1) Sort the requests by finish time.

2) Go through the requests in order of finish time, scheduling

them in the room if the room is unoccupied at its start time.

Now, we will prove that this algorithm does indeed maximize

the number of events scheduled using proof by contradiction.

Let S be the schedule determined by the algorithm above. Let S

schedule k events. We will assume to the contrary, that there

exists a schedule S' that has at least k+1 events scheduled.

We know that S finishes its first event at or before S'. (This is

because S always schedules the first event to finish. S' can

either schedule that one, or another one that ends later.) Thus,

initially, S is at or ahead of S' since it has finished as many or

more tasks than S' at that particular moment. (Let this

moment be t1. In general, let ti be the time at which S completes

its ith scheduled event. Also, let t'
i be the time at which S'

completes its ith scheduled event.)

We know that

1) t'
1  t1

2) t'
k+1 < tk+1 since S' ended up scheduling at least k+1 events.

Thus there must exists a minimal value m for which

t'
m < tm and this value is greater than 1, and at most k+1.

(Essentially, S' is at or behind S from the beginning and will

catch up and pass S at some point...)

Since m is minimal, we know that

t'
m-1  tm-1.

But, we know that the mth event schedule by S ends AFTER

the mth event scheduled by S'. This contradicts the nature of

the algorithm used to construct S. Since t'
m-1  tm-1, we know

that S will pick the first event to finish that starts after time tm-

1. BUT, S' was forced to also pick some event that starts after

tm-1. Since S picks the fastest finishing event, it's impossible for

this choice to end AFTER S' choice, which is just as restricted.

This contradicts our deduction that t'
m < tm. Thus, it must be

the case that our initial assumption is wrong, proving S to be

optimal.

Multiple Room Scheduling (in text)

Given a set of requests with start and end times, the goal here

is to schedule all events using the minimal number of rooms.

Once again, a greedy algorithm will suffice:

1) Sort all the requests by start time.

2) Schedule each event in any available empty room. If no

room is available, schedule the event in a new room.

We can also prove that this is optimal as follows:

Let k be the number of rooms this algorithm uses for

scheduling. When the kth room is scheduled, it MUST have

been the case that all k-1 rooms before it were in use. At the

exact point in time that the k room gets scheduled, we have k

simultaneously running events. It's impossible for any schedule

to handle this type of situation with less than k rooms. Thus,

the given algorithm minimizes the total number of rooms used.

Fractional Knapsack Problem

Your goal is to maximize the value of a knapsack that can hold

at most W units worth of goods from a list of items I1, I2, ... In.

Each item has two attributes:

1) A value/unit; let this be vi for item Ii.

2) Weight available; let this be wi for item Ii.

The algorithm is as follows:

1) Sort the items by value/unit.

2) Take as much as you can of the most expensive item left,

moving down the sorted list. You may end up taking a

fractional portion of the "last" item you take.

Consider the following example:

There are 4 lbs. of I1 available with a value of $50/lb.

There are 40 lbs. of I2 available with a value of $30/lb.

There are 25 lbs. of I3 available with a value of $40/lb.

The knapsack holds 50 lbs.

You will do the following:

1) Take 4 lbs of I1.

2) Take 25 lbs. of I3.

3) Tale 21 lbs. of I2.

Value of knapsack = 4*50 + 25*40 + 21*30 = $1830.

Why is this maximal? Because if we were to exchange any good

from the knapsack with what was left over, it is IMPOSSIBLE

to make an exchange of equal weight such that the knapsack

gains value. The reason for this is that all the items left have a

value/lb. that is less than or equal to the value/lb. of ALL the

material currently in the knapsack. At best, the trade would

leave the value of the knapsack unchanged. Thus, this

algorithm produces the maximal valued knapsack.

Containers Problem

The full text of the problem is here:

http://www.cs.ucf.edu/~dmarino/ucf/cop3503/extraprogs/Greedy-Containers/containers.pdf

The gist of the problem is that you're given a sequence of

containers arriving at a shipping port and must arrange them

into stacks. Each container has a letter label and you can only

place a container on top of another container if its letter is

equal to or comes before letter of the container you are placing

it upon. The goal of the problem is to minimize the number of

stacks you form.

We would never need more than 26 stacks, of course (one per

letter). Here is a greedy algorithm that solves the problem:

1) Process the containers as they come.

2) Whenever a container comes, put it on top of the stack with

the earliest possible letter. If no such stack exists, make a new

stack.

For example, if you get an 'M' and the current top of the stacks

are 'B', 'K', 'N', 'Q' and 'Y', place the 'M' on top of the stack

with the 'N' on top. After doing so, the new tops of the stacks

will be ('B', 'K', 'M', 'Q', 'Y').

The reason for the optimality of this algorithm is the exchange

argument. In the example above, consider placing the 'M' on

either the 'Q' or 'Y'. This would yield the two following tops of

stacks:

'B', 'K', 'N', 'M', 'Y'

'B', 'K', 'N', 'Q', 'M'

Sorting these alphabetically, we get:

'B', 'K', 'M', 'N', 'Y'

'B', 'K', 'M', 'N', 'Q'

When we compare this to the algorithm's set:

'B', 'K', 'M' 'Q', 'Y'

We see that the algorithm's set of stacks can handle ANY new

letter equally or better than the other two stacks. In short,

there is more freedom to place future letters in this

configuration. This is easy to see because the algorithm's set of

stacks shares four (all but one) letter with its two alternatives.

The letter not shared leaves more freedom for the algorithm's

set of stacks.

Note: One interesting side tidbit is that there are quite a few

short and different ways to code solutions to this problem!

