
Graphs 

 
Definition (undirected, unweighted): A graph G, consists of a 

set of vertices, V, (or nodes) and a set of edges, E, such that 

each edge is associated with a pair of vertices. We write G = 

(V,E). 

 

A directed graph is the same as above, but where each edge is 

associated with an ordered pair of vertices. 

 

A weighted graph is the same as above, but where each edge 

also has an associated real number with it, known as the edge 

weight. 

 

Data Structures to Store Graphs 

 
Adjacency Matrix 

The standard adjacency matrix stores a matrix as a 2-D array 

with each slot in A[i][j] being a 1 if there is an edge from vertex 

i to vertex j, or storing a 0 otherwise. Alternatively, each entry 

in the array is null if no edge is connecting those vertices, or an 

Edge object that stores all necessary information about the 

edge. If it's a weighted graph, A[i][j] stores the edge weight of 

the edge connecting i to j. With undirected graphs, A[i][j] = 

A[j][i]. For weighted graphs, if there is no edge from i to j, 

there are several options (store a large integer, store -1, store 

null). 

 

Although these are very easy to work with mathematically, 

they are more inefficient than Edge lists for several tasks. For 

example, you must scan all vertices to find all the edges 

incident to a vertex. In a relatively sparse graph, using an 

adjacency matrix would be very inefficient for running some of 

the algorithms we will learn. 



Edge List Structure 

An edge list is an array of lists, where A[i] stores each edge that 

goes from vertex i. For an unweighted graph, the list could just 

be a list of integers (adjacent vertices) and for a weighted 

graph the list could be of edge objects. 

 

 

Graph Definitions 

 
A complete undirected unweighted graph is one where there is 

an edge connecting all possible pairs of vertices in a graph. The 

complete graph with n vertices is denoted as Kn. 

 

A graph is bipartite if there exists a way to partition the set of 

vertices V, in the graph into two sets V1 and V2, where V1  V2 

= V and V1  V2 = , such that each edge in E contains one 

vertex from V1 and the other vertex from V2. 

 

A complete bipartite graph on m and n vertices is denoted by 

Km,n and consists of m+n vertices, with each of the first m 

vertices connected to all of the other n vertices, and no other 

vertices. 

 

A path of length n from vertex v0 to vertex vn is an alternating 

sequence of n+1 vertices and n edges beginning with vertex v0 

and ending with vertex vn in which edge ei is incident upon 

vertices vi-1 and vi. (The order in which these are connected 

matters for a path in a directed graph in the natural way.) 

 

A connected graph is one where you any pair of vertices in the 

graph is connected by at least one path.  

 



A graph G'= (V', E') is a subgraph of G = (V, E) if V'  V,  E' 

 E, and for every edge e'  E', if e' is incident on v' and w', 

then both of these vertices is contained in V'. 

 

The function dist(v, w), where v and w are two vertices in a 

graph is defined as the length of the shortest path from v to w. 

 

The diameter of a graph is simply the maximum distance 

between any two vertices in the graph. 

More Graph Definitions... 

 
A simple path is one that contains no repeated vertices. 

 

A cycle is a path of non-zero length from and to the same 

vertex with no repeated edges. 

 

A simple cycle is a cycle with no repeated vertices except for 

the first and last one. 

 

A Hamiltonian cycle is a simple cycle that contains all the 

vertices in the graph. 

 

An Euler cycle is a cycle that contains every edge in the graph 

exactly once. Note that a vertex may be contained in an Euler 

cycle more than once. Typically, these are known as Euler 

circuits, because a circuit has no repeated edges. 

 

Interestingly enough, there is a nice simple method for 

determining if a graph has an Euler circuit, but no such 

method exists to determine if a graph has a Hamiltonian cycle. 

The latter problem is an NP-Complete problem. It a nutshell, 

this means it is most-likely difficult to solve perfectly in 

polynomial time. We will cover this topic at the end of the 

course more thoroughly, hopefully. 



 

The complement of a graph G is a graph G' which contains all 

the vertices of G, but for each edge that exists in G, it is NOT 

in G', and for each possible edge NOT in G, it IS in G'. 

 

Two graphs G and G' are isomorphic if there is a one-to-one 

correspondence between the vertices of the two graphs such 

that the resulting adjacency matrices are identical. 

 

Graph Coloring 

 
For graph coloring, we will deal with unweighted undirected 

graphs. To color a graph, you must assign a color to each 

vertex in a graph such that no two vertices connected by an 

edge are the same color. 

 

Thus, a graph where all vertices are connected (a complete 

graph) must have all of its vertices colored separate colors. 

 

All bipartite graphs can be colored with only two colors, and 

all graphs that can be colored with two colors are bipartite. To 

see this, first simply note that we can two-color a bipartite 

graph by simply coloring all the vertices in V1 one color and all 

the vertices in V2 the other color. To see the latter result, given 

a two-coloring of a graph, simply separate the vertices by 

color, putting all blue vertices on one side and all the red ones 

on the other. These two groups specify the existence of sets V1 

and V2, as designated by the definition of bipartite graphs. 

 

The minimum number of colors that is necessary to color a 

graph is known as its chromatic number. 

 

Interestingly enough, there is an efficient solution to determine 

whether or not a graph can be colored with two colors or not, 



but no efficient solution currently exists to determine whether 

or not a graph can be colored using three colors. 



Graph Traversals 

 
Depth First Search 

The general "rule" used in searching a graph using a depth 

first search is to search down a path from a particular source 

vertex as far as you can go. When you can go to farther, 

"backtrack" to the last vertex from which a different path 

could have been taken. Continue in this fashion, attempting to 

go as deep as possible down each path until each node has been 

visited. 

 

The most difficult part of this algorithm is keeping track of 

what nodes have already been visited, so that the algorithm 

does not run ad infinitum. We can do this by labeling each 

visited node and labeling "discovery" and "back" edges. 

 

The algorithm is as follows: 

 

DFS(Graph G,vertex v): 

For  all edges e incident to the start vertex v do: 

 1) If e is unexplored 

  a) Let e connect v to w. 

  b) If w is unexplored, then 

   i) Label e as a discovery edge 

   ii) Recursively call DFS(G,w) 

      else 

   iii) Label e as a back edge 

 



In pseudocode, for the simplest version we do the following, 

not worrying specifically about marking discovery or back 

edges: 

 

DFS(Graph G, vertex v, boolean[] visited) { 

 

     visited[v] = true; 

     for (vertex u: neighbor of v) 

          if (!visited[u]) 

              DFS(G, u, visited); 

} 

 

To prove that this algorithm visits all vertices in the connected 

component of the graph in which it starts, note the following: 

 

Let the vertex u be the first vertex on any path from the source 

vertex that is not visited. That means that w, which is 

connected to u was visited, but by the algorithm given, it's 

clear that if this situation occurs, u must be visited, 

contradicting the assumption that u was unvisited. 

 

Next, we must show that the algorithm terminates.  If it does 

not, then there must exist a "search path" that never ends. But 

this is impossible. A search path ends when an already visited 

vertex is visited again. The longest path that exists without 

revisiting a vertex is of length V, the number of vertices in the 

graph. 

 

The running time of DFS is O(V+E). To see this, note that each 

edge and vertex is visited at most twice. In order to get this 

efficiency, an adjacency list must be used. (An adjacency 

matrix can not be used to complete this algorithm that 

quickly.)  

 

 



Breadth First Search 

The idea in a breadth first search is opposite to a depth first 

search. Instead of searching down a single path until you can 

go no longer, you search all paths at an uniform depth from 

the source before moving onto deeper paths. Once again, we'll 

need to mark both edges and vertices based on what has been 

visited. 

 

In essence, we only want to explore one "unit" away from a 

searched node before we move to a different node to search 

from. All in all, we will be adding nodes to the back of a queue 

to be ones to searched from in the future. In the 

implementation on the following page, a set of queues Li are 

maintained, each storing a list of vertices a distance of i edges 

from the starting vertex. One can implement this algorithm 

with a single queue as well. Let Li be the set of vertices visited 

that are a path length of i from the source vertex for the 

algorithm. 

 

BFS(Graph G,vertex s): 

1) Let L0 be empty 

2) Insert s into L0. 

3) Let i = 0 

4) While Li is not empty do the following: 

 A) Create an empty container Li+1. 

 B) For each vertex v in Li do 

  i) For all edges e incident to v 

   a) if e is unexplored, mark endpoint w. 

   b) if w is unexplored 

    Mark it. 

    Insert w into Li+1. 

    Label e as a discovery edge. 

       else 

    Label e as a cross edge. 

 C) i = i+1 



In code, we might do this more simply as follows: 

 

BFS(ArrayList[] G, vertex v) { 

 

     int[] dist = new int[G.length]; 

     Arrays.fill(dist, -1); 

     dist[v] = 0; 

     LinkedList q = new LinkedList<Integer>(); 

     q.offer(v); 

     while (q.size() > 0) {    

          int cur = q.poll(); 

          for (Integer next: (ArrayList<Integer>)G[cur]) 

          if (dist[next] == -1) { 

                dist[next] = dist[cur] + 1; 

                q.offer(next); 

          } 

     } 

} 

              

} 

 

The basic idea here is that we have successive rounds and 

continue with our rounds until no new vertices are visited on a 

round. For each round, we look at each vertex connected to the 

vertex we came from. And from this vertex we look at all 

possible connected vertices.  

 

This leaves no vertex unvisited because we continue to look for 

vertices until no new ones of a particular length are found.  If 

there are no paths of length 10 to a new vertex, surely there 

can be no paths of length 11 to a new vertex. The algorithm 

also terminates since no path can be longer than the number of 

vertices in the graph. 

 

 



Directed Graphs 

 
Traversals 

Both of the traversals are essentially the same on a directed 

graph. When you run the algorithms, you must simply pay 

attention to the direction of the edges. Furthermore, you must 

keep in mind that you will only visit edges that are reachable 

from the source vertex. 

 

Mark and Sweep Algorithm for Garbage Collection 

A mark bit is associated with each object created in a Java 

program. It indicates if the object is live or not. When the JVM 

notices that the memory heap is low, it suspends all threads, 

and clears all mark bits. To garbage collect, we go through 

each live stack of current threads and mark all these objects as 

live. Then we use a DFS to mark all objects reachable from 

these initial live objects. (In particular each object is viewed as 

a vertex and each reference as a directed edge.) This completes 

marking all live objects. Then we scan through the memory 

heap freeing all space that has NOT been marked. 

 
 

 
 

 


