
Graphs

Definition (undirected, unweighted): A graph G, consists of a

set of vertices, V, (or nodes) and a set of edges, E, such that

each edge is associated with a pair of vertices. We write G =

(V,E).

A directed graph is the same as above, but where each edge is

associated with an ordered pair of vertices.

A weighted graph is the same as above, but where each edge

also has an associated real number with it, known as the edge

weight.

Data Structures to Store Graphs

Adjacency Matrix

The standard adjacency matrix stores a matrix as a 2-D array

with each slot in A[i][j] being a 1 if there is an edge from vertex

i to vertex j, or storing a 0 otherwise. Alternatively, each entry

in the array is null if no edge is connecting those vertices, or an

Edge object that stores all necessary information about the

edge. If it's a weighted graph, A[i][j] stores the edge weight of

the edge connecting i to j. With undirected graphs, A[i][j] =

A[j][i]. For weighted graphs, if there is no edge from i to j,

there are several options (store a large integer, store -1, store

null).

Although these are very easy to work with mathematically,

they are more inefficient than Edge lists for several tasks. For

example, you must scan all vertices to find all the edges

incident to a vertex. In a relatively sparse graph, using an

adjacency matrix would be very inefficient for running some of

the algorithms we will learn.

Edge List Structure

An edge list is an array of lists, where A[i] stores each edge that

goes from vertex i. For an unweighted graph, the list could just

be a list of integers (adjacent vertices) and for a weighted

graph the list could be of edge objects.

Graph Definitions

A complete undirected unweighted graph is one where there is

an edge connecting all possible pairs of vertices in a graph. The

complete graph with n vertices is denoted as Kn.

A graph is bipartite if there exists a way to partition the set of

vertices V, in the graph into two sets V1 and V2, where V1 V2

= V and V1 V2 = , such that each edge in E contains one

vertex from V1 and the other vertex from V2.

A complete bipartite graph on m and n vertices is denoted by

Km,n and consists of m+n vertices, with each of the first m

vertices connected to all of the other n vertices, and no other

vertices.

A path of length n from vertex v0 to vertex vn is an alternating

sequence of n+1 vertices and n edges beginning with vertex v0

and ending with vertex vn in which edge ei is incident upon

vertices vi-1 and vi. (The order in which these are connected

matters for a path in a directed graph in the natural way.)

A connected graph is one where you any pair of vertices in the

graph is connected by at least one path.

A graph G'= (V', E') is a subgraph of G = (V, E) if V' V, E'

 E, and for every edge e' E', if e' is incident on v' and w',

then both of these vertices is contained in V'.

The function dist(v, w), where v and w are two vertices in a

graph is defined as the length of the shortest path from v to w.

The diameter of a graph is simply the maximum distance

between any two vertices in the graph.

More Graph Definitions...

A simple path is one that contains no repeated vertices.

A cycle is a path of non-zero length from and to the same

vertex with no repeated edges.

A simple cycle is a cycle with no repeated vertices except for

the first and last one.

A Hamiltonian cycle is a simple cycle that contains all the

vertices in the graph.

An Euler cycle is a cycle that contains every edge in the graph

exactly once. Note that a vertex may be contained in an Euler

cycle more than once. Typically, these are known as Euler

circuits, because a circuit has no repeated edges.

Interestingly enough, there is a nice simple method for

determining if a graph has an Euler circuit, but no such

method exists to determine if a graph has a Hamiltonian cycle.

The latter problem is an NP-Complete problem. It a nutshell,

this means it is most-likely difficult to solve perfectly in

polynomial time. We will cover this topic at the end of the

course more thoroughly, hopefully.

The complement of a graph G is a graph G' which contains all

the vertices of G, but for each edge that exists in G, it is NOT

in G', and for each possible edge NOT in G, it IS in G'.

Two graphs G and G' are isomorphic if there is a one-to-one

correspondence between the vertices of the two graphs such

that the resulting adjacency matrices are identical.

Graph Coloring

For graph coloring, we will deal with unweighted undirected

graphs. To color a graph, you must assign a color to each

vertex in a graph such that no two vertices connected by an

edge are the same color.

Thus, a graph where all vertices are connected (a complete

graph) must have all of its vertices colored separate colors.

All bipartite graphs can be colored with only two colors, and

all graphs that can be colored with two colors are bipartite. To

see this, first simply note that we can two-color a bipartite

graph by simply coloring all the vertices in V1 one color and all

the vertices in V2 the other color. To see the latter result, given

a two-coloring of a graph, simply separate the vertices by

color, putting all blue vertices on one side and all the red ones

on the other. These two groups specify the existence of sets V1

and V2, as designated by the definition of bipartite graphs.

The minimum number of colors that is necessary to color a

graph is known as its chromatic number.

Interestingly enough, there is an efficient solution to determine

whether or not a graph can be colored with two colors or not,

but no efficient solution currently exists to determine whether

or not a graph can be colored using three colors.

Graph Traversals

Depth First Search

The general "rule" used in searching a graph using a depth

first search is to search down a path from a particular source

vertex as far as you can go. When you can go to farther,

"backtrack" to the last vertex from which a different path

could have been taken. Continue in this fashion, attempting to

go as deep as possible down each path until each node has been

visited.

The most difficult part of this algorithm is keeping track of

what nodes have already been visited, so that the algorithm

does not run ad infinitum. We can do this by labeling each

visited node and labeling "discovery" and "back" edges.

The algorithm is as follows:

DFS(Graph G,vertex v):

For all edges e incident to the start vertex v do:

 1) If e is unexplored

 a) Let e connect v to w.

 b) If w is unexplored, then

 i) Label e as a discovery edge

 ii) Recursively call DFS(G,w)

 else

 iii) Label e as a back edge

In pseudocode, for the simplest version we do the following,

not worrying specifically about marking discovery or back

edges:

DFS(Graph G, vertex v, boolean[] visited) {

 visited[v] = true;

 for (vertex u: neighbor of v)

 if (!visited[u])

 DFS(G, u, visited);

}

To prove that this algorithm visits all vertices in the connected

component of the graph in which it starts, note the following:

Let the vertex u be the first vertex on any path from the source

vertex that is not visited. That means that w, which is

connected to u was visited, but by the algorithm given, it's

clear that if this situation occurs, u must be visited,

contradicting the assumption that u was unvisited.

Next, we must show that the algorithm terminates. If it does

not, then there must exist a "search path" that never ends. But

this is impossible. A search path ends when an already visited

vertex is visited again. The longest path that exists without

revisiting a vertex is of length V, the number of vertices in the

graph.

The running time of DFS is O(V+E). To see this, note that each

edge and vertex is visited at most twice. In order to get this

efficiency, an adjacency list must be used. (An adjacency

matrix can not be used to complete this algorithm that

quickly.)

Breadth First Search

The idea in a breadth first search is opposite to a depth first

search. Instead of searching down a single path until you can

go no longer, you search all paths at an uniform depth from

the source before moving onto deeper paths. Once again, we'll

need to mark both edges and vertices based on what has been

visited.

In essence, we only want to explore one "unit" away from a

searched node before we move to a different node to search

from. All in all, we will be adding nodes to the back of a queue

to be ones to searched from in the future. In the

implementation on the following page, a set of queues Li are

maintained, each storing a list of vertices a distance of i edges

from the starting vertex. One can implement this algorithm

with a single queue as well. Let Li be the set of vertices visited

that are a path length of i from the source vertex for the

algorithm.

BFS(Graph G,vertex s):

1) Let L0 be empty

2) Insert s into L0.

3) Let i = 0

4) While Li is not empty do the following:

 A) Create an empty container Li+1.

 B) For each vertex v in Li do

 i) For all edges e incident to v

 a) if e is unexplored, mark endpoint w.

 b) if w is unexplored

 Mark it.

 Insert w into Li+1.

 Label e as a discovery edge.

 else

 Label e as a cross edge.

 C) i = i+1

In code, we might do this more simply as follows:

BFS(ArrayList[] G, vertex v) {

 int[] dist = new int[G.length];

 Arrays.fill(dist, -1);

 dist[v] = 0;

 LinkedList q = new LinkedList<Integer>();

 q.offer(v);

 while (q.size() > 0) {

 int cur = q.poll();

 for (Integer next: (ArrayList<Integer>)G[cur])

 if (dist[next] == -1) {

 dist[next] = dist[cur] + 1;

 q.offer(next);

 }

 }

}

}

The basic idea here is that we have successive rounds and

continue with our rounds until no new vertices are visited on a

round. For each round, we look at each vertex connected to the

vertex we came from. And from this vertex we look at all

possible connected vertices.

This leaves no vertex unvisited because we continue to look for

vertices until no new ones of a particular length are found. If

there are no paths of length 10 to a new vertex, surely there

can be no paths of length 11 to a new vertex. The algorithm

also terminates since no path can be longer than the number of

vertices in the graph.

Directed Graphs

Traversals

Both of the traversals are essentially the same on a directed

graph. When you run the algorithms, you must simply pay

attention to the direction of the edges. Furthermore, you must

keep in mind that you will only visit edges that are reachable

from the source vertex.

Mark and Sweep Algorithm for Garbage Collection

A mark bit is associated with each object created in a Java

program. It indicates if the object is live or not. When the JVM

notices that the memory heap is low, it suspends all threads,

and clears all mark bits. To garbage collect, we go through

each live stack of current threads and mark all these objects as

live. Then we use a DFS to mark all objects reachable from

these initial live objects. (In particular each object is viewed as

a vertex and each reference as a directed edge.) This completes

marking all live objects. Then we scan through the memory

heap freeing all space that has NOT been marked.

