
More Dynamic Programming

Floyd-Warshall Algorithm

(All Pairs Shortest Path Problem)

A weighted graph is a collection of points(vertices) connected

by lines(edges), where each edge has a weight(some real

number) associated with it. One of the most common examples

of a graph in the real world is a road map. Each location is a

vertex and each road connecting locations is an edge. We can

think of the distance travelled on a road from one location to

another as the weight of that edge.

Given a weighted graph, it is often of interest to know the

shortest path from one vertex in the graph to another. The

Floyd-Warshall algorithm algorithm determines the shortest

path between all pairs of vertices in a graph.

Although I don't expect you all to understand the full

derivation of this algorithm, I will go through some of the

intuition as to how it works and then the algorithm itself.

The vertices in a graph be numbered from 1 to n. Consider the

subset {1,2...,k} of these n vertices.

Imagine finding the shortest path from vertex i to vertex j that

uses vertices in the set {1,2, ...,k} only. There are two

situations:

1) k is an intermediate vertex on the shortest path.

2) k is not an intermediate vertex on the shortest path.

In the first situation, we can break down our shortest path into

two paths: i to k and then k to j. Note that all the intermediate

vertices from i to k are from the set {1,2,...,k-1} and that all the

intermediate vertices from k to j are from the set {1,2,...,k-1}

also.

In the second situation, we simply have that all intermediate

vertices are from the set {1,2,...,k-1}.

Now, define the function D for a weighted graph with the

vetrtices {1,2,...n} as follows:

D(i,j,k) = the shortest distance from vertex i to vertex j using

the intermediate vertices in the set {1,2,...,k}

Now, using the ideas from above, we can actually recursively

define the function D:

D(i,j,k) = w(i,j), if k=0

 min(D(i,j,k-1), D(i,k,k-1)+D(k,j,k-1)) if k > 0

In English, the first line says that if we do not allow

intermediate vertices, then the shortest path between two

vertices is the weight of the edge that connects them. If no such

weight exists, we usually define this shortest path to be of

length infinity.

The second line pertains to allowing intermediate vertices. It

says that the minimum path from i to j through vertices

{1,2,...,k} is either the minimum path from i to j through

vertices {1,2,...,k-1} OR the sum of the minimum path from

vertex i to k through {1,2,...,k-1} plus the minimum path from

vertex k to j through {1,2,...k-1}. Since this is the case, we

compute both and choose the smaller of these.

All of this points to storing a 2-dimensional table of shortest

distances and using dynamic programming for a solution.

Here is the basic idea:

1) Set up a 2D array that stores all the weights between one

vertex and another. Here is an example:

0 3 8 inf -4

inf 0 inf 1 7

inf 4 0 inf inf

2 inf -5 0 inf

inf inf inf 6 0

Notice that the diagonal is all zeros. Why?

Now, for each entry in this array, we will "add in"

intermediate vertices one by one, (first with k=1, then k=2, etc.)

and update each entry once for each value of k.

After adding vertex 1, here is what our matrix will look like:

0 3 8 inf -4

inf 0 inf 1 7

inf 4 0 inf inf

2 5 -5 0 -2

inf inf inf 6 0

After adding vertex 2, we get:

0 3 8 4 -4

inf 0 inf 1 7

inf 4 0 5 11

2 5 -5 0 -2

inf inf inf 6 0

After adding vertex 3, we get:

0 3 8 4 -4

inf 0 inf 1 7

inf 4 0 5 11

2 -1 -5 0 -2

inf inf inf 6 0

After adding vertex 4, we get:

0 3 -1 4 -4

3 0 -4 1 -1

7 4 0 5 3

2 -1 -5 0 -2

8 5 1 6 0

Finally, after adding in the last vertex:

0 1 -3 2 -4

3 0 -4 1 -1

7 4 0 5 3

2 -1 -5 0 -2

8 5 1 6 0

Looking at this example, we can come up with the following

algorithm:

Let D1 store the matrix with the initial graph edge

information. D2 will stored calculated information look at D1.

For k=1 to n {

 For i=1 to n {

 For j=1 to n

 D2[i,j] = min(D1[i,j], D1[i,k]+D1[k,j])

 }

 Copy matrix D2 into D1

}

Last D2 matrix will store all the shortest paths.

In order to code this up, we could do so in a static method. We

need the adjacency matrix of the graph passed into the method

as a two dimensional double matrix. Then we need the

auxiliary min and copy methods.

As it turns out, you do NOT need to use 2 separate matrices,

even though we traced through the algorithm in that manner.

The reason for this is that when we look up values in the

"current matrix", we know that those values will be at least as

good as the values we would have looked up in the "previous

matrix." Thus, in essence, we will not be overlooking any

possible shortest path.

Here is the code for these methods:

public class floyd {

 // Runs Floyd Warshall algorithm. Returns the matrix of

 // shortest paths.

 public static int[][] shortestpath(int[][] adj) {

 int n = adj.length;

 int[][] m = new int[n][n];

 // Initialize m to be graph adjacency matrix

 copy(m, adj);

 // Add in each vertex as intermediate point.

 for (int k=0; k<n;k++) {

 // Recalculate estimate for distance from vertex i to j.

 for (int i=0; i<n; i++) {

 for (int j=0; j<n;j++)

 m[i][j] = Math.min(m[i][j], m[i][k]+m[k][j]);

 }

 }

 return m;

 }

 public static void copy(int[][] a, int[][] b) {

 for (int i=0;i<a.length;i++)

 for (int j=0;j<a.length;j++)

 a[i][j] = b[i][j];

 }

}

Path Reconstruction in Floyd's Algorithm

When you run Floyd’s, what you’re really doing is initializing

your distance matrix and path matrix to indicate the use of no

immediate vertices. (Thus, you are only allowed to traverse

direct paths between vertices.)

At each step of Floyd’s, you essentially find out whether or not

using vertex k will improve an estimate between the distances

between vertex i and vertex j. If it does improve the estimate

here’s what you need to record:

1) record the new shortest path weight between i and j

2) record the fact that the shortest path between i and j goes

through k

#1 is done in the edited adjacency matrix. Hopefully this

update (with the if statement) is fairly easy to understand.

Here is how #2 is done:

First, it’s important to understand what the path matrix stores.

In particular, when

path[i][j] = k, that means that in the shortest path from vertex i

to vertex j, the LAST vertex on that path before you get to

vertex j is k.

Based on this definition, we must initialize the path matrix as

follows:

path[i][j] = i if i!=j and there exists an edge from i to j

 = null otherwise

The reasoning is as follows:

If you want to reconstruct the path at this point of the

algorithm when you aren’t allowed to visit intermediate

vertices, the previous vertex visited MUST be the source vertex

i. null is used to indicate the absence of a path.

Now, once the algorithm starts, here is how we update the path

matrix

If vertex k doesn’t improve our path estimate, then we don’t

want to change our path at all and do not update the path

matrix.

Now, let’s say that vertex k improves our distance estimate in

between i and j. We want to store the last vertex from the

shortest path from vertex k to vertex j. This will NOT

necessarily be k, but rather, it will be path[k][j].

Using this information, we have the following rule to update

the path matrix during the kth iteration of Floyd’s:

pathk[i][j] = path(k-1)[i][j], if vertex k doesn’t improve the

estimate

 = path(k-1)[k][j], otherwise

But, just as you only need to store one copy of the distance

matrix while you run floyd’s, you only have to store one copy

of the path matrix as well! Thus, codewise, we’d do the

following update:

if (D[i][k]+D[k][j] < D[i][j]) { // Update via vertex k

 D[i][j] = D[i][k]+D[k][j];

 path[i][j] = path[k][j];

}

Now, the once this path matrix is computed, we have all the

information necessary to reconstruct the path. Consider the

following path matrix (indexed from 1 to 5 instead of 0 to 4):

Nil 3 4 5 1

4 Nil 4 2 1

4 3 Nil 2 1

4 3 4 Nil 1

4 3 4 5 Nil

where the vertices are numbered from 1 to 5. To reconstruct

the path from 1 to 2, for example, we look at path[1][2]. It has

a 3. This signifies that on the path from 1 to 2, 3 is the last

vertex visited before 2. Thus, the path is now, 1…3->2. Now,

look at path[1][3], this stores a 4. Thus, we find the last vertex

visited on the path from 1 to 3 is 4. So, our path now looks like

1…4->3->2. So, we must now look at path[1][4]. This stores a

5, thus, we know our path is 1…5->4->3->2. When we look at

path[1][5], we find 1, which means our path is 1->5->4->3->2.

One more example: find the path from vertex 2 to vertex 5.

Path[2][5] = 1

Path[2][1] = 4

Path[2][4] = 2

So, the path is 2->4->1->5.

Transitive Closure

The transitive closure of a directed graph G contains an edge

in between each pair of vertices in G that are connected.

(Connected means that there is a path in G in between the two

vertices.) In essence, computing a transitive closure of a graph

gives you complete information about which vertices are

connected to which other vertices.

We can use a variant of Floyd-Warshall's algorithm for

shortest paths to determine the transitive closure of a graph G

as follows:

FloydWarshall(G)

1) G0 = G

2) For k=1 to V do

 a) Gk = Gk-1

 b) For i=1 to V do

 i) For j=1 to V do

 if edge (vi, vk) and (vk, vj) are edges in Gk-1

 Add (vi, vj) to Gk.

3) Return GV.

This is the SAME as the other Floyd-Warshall Algorithm,

except for when we find a non-infinity estimate, we simply add

an edge to the transitive closure graph. Every round we build

off the previous paths reached. After iterating through all

vertices being intermediate vertices, we have tried to connect

all pairs of vertices i and j through all intermediate vertices k.

Negative Cycle Detection via Floyd-Warshall's Algorithm

If there is a negative cycle in a graph, then not all shortest

distances are well-defined. In most problems, it's given that a

graph doesn't have a negative weight cycle so that the shortest

distances are indeed defined. When we run Floyd's on a graph

that does have negative weight cycles, it will give us shortest

distances between all pairs of points, but these aren't all

necessarily meaningful (or correct) if there are negative weight

cycles, since if we can go from vertex i to vertex k, and then go

in a loop to lower our weight from k to k, and then go from k

to j, then in some sense, we could always go take that loop from

k to k as many times as we wanted and get even shorter

distances.

After we run Floyd's, if adj[i][i] < 0 for any i, then that means

there is a negative weight cycle in the graph.

To see if there is a negative weight cycle on a path from i to j,

what we want to do is check for each vertex k, if k is reachable

from i, and j is reachable from k, and adj[k][k] < 0. If all three

things are true for any vertex k, then there is no well-defined

shortest path from i to j.

