
More Dynamic Programming 

Floyd-Warshall Algorithm 

(All Pairs Shortest Path Problem) 

 
A weighted graph is a collection of points(vertices) connected 

by lines(edges), where each edge has a weight(some real 

number) associated with it. One of the most common examples 

of a graph in the real world is a road map. Each location is a 

vertex and each road connecting locations is an edge. We can 

think of the distance travelled on a road from one location to 

another as the weight of that edge. 

 

Given a weighted graph, it is often of interest to know the 

shortest path from one vertex in the graph to another. The 

Floyd-Warshall algorithm algorithm determines the shortest 

path between all pairs of vertices in a graph. 

 

Although I don't expect you all to understand the full 

derivation of this algorithm, I will go through some of the 

intuition as to how it works and then the algorithm itself. 

 

The vertices in a graph be numbered from 1 to n. Consider the 

subset {1,2...,k} of these n vertices.  

 

Imagine finding the shortest path from vertex i to vertex j that 

uses vertices in the set {1,2, ...,k} only. There are two 

situations: 

 

1) k is an intermediate vertex on the shortest path. 

2) k is not an intermediate vertex on the shortest path. 

 

 

 

 



In the first situation, we can break down our shortest path into 

two paths: i to k and then k to j. Note that all the intermediate 

vertices from i to k are from the set {1,2,...,k-1} and that all the 

intermediate vertices from k to j are from the set {1,2,...,k-1} 

also. 

 

In the second situation, we simply have that all intermediate 

vertices are from the set {1,2,...,k-1}. 

 

Now, define the function D for a weighted graph with the 

vetrtices {1,2,...n} as follows: 

 

D(i,j,k) = the shortest distance from vertex i to vertex j using 

the intermediate vertices in the set {1,2,...,k} 

 

Now, using the ideas from above, we can actually recursively 

define the function D: 

 

D(i,j,k) = w(i,j), if k=0 

                 min( D(i,j,k-1), D(i,k,k-1)+D(k,j,k-1) ) if k > 0 

 

In English, the first line says that if we do not allow 

intermediate vertices, then the shortest path between two 

vertices is the weight of the edge that connects them. If no such 

weight exists, we usually define this shortest path to be of 

length infinity. 

 

The second line pertains to allowing intermediate vertices. It 

says that the minimum path from i to j through vertices 

{1,2,...,k} is either the minimum path from i to j through 

vertices {1,2,...,k-1} OR the sum of the minimum path from 

vertex i to k through {1,2,...,k-1} plus the minimum path from 

vertex k to j through {1,2,...k-1}. Since this is the case, we 

compute both and choose the smaller of these. 

 



All of this points to storing a 2-dimensional table of shortest 

distances and using dynamic programming for a solution. 

 

Here is the basic idea: 

 

1) Set up a 2D array that stores all the weights between one 

vertex and another. Here is an example: 

 

0 3 8 inf -4 

inf 0 inf 1 7 

inf 4 0 inf  inf 

2 inf -5 0 inf 

inf inf  inf 6 0 

 

Notice that the diagonal is all zeros. Why? 

 

Now, for each entry in this array, we will "add in" 

intermediate vertices one by one, (first with k=1, then k=2, etc.) 

and update each entry once for each value of k. 

 

After adding vertex 1, here is what our matrix will look like: 

 

0 3 8 inf -4 

inf 0 inf 1 7 

inf 4 0 inf  inf 

2 5 -5 0 -2 

inf inf  inf 6 0 

 

After adding vertex 2, we get: 

 

0 3 8 4 -4 

inf 0 inf 1 7 

inf 4 0 5 11 

2 5 -5 0 -2 

inf inf  inf 6 0 



After adding vertex 3, we get: 

 

0 3 8 4 -4 

inf 0 inf 1 7 

inf 4 0 5 11 

2 -1 -5 0 -2 

inf inf  inf 6 0 

 

After adding vertex 4, we get: 

 

0 3 -1 4 -4 

3 0 -4 1 -1 

7 4 0 5 3 

2 -1 -5 0 -2 

8 5  1 6 0 

 

Finally, after adding in the last vertex: 

 

0 1 -3 2 -4 

3 0 -4 1 -1 

7 4 0 5 3 

2 -1 -5 0 -2 

8 5  1 6 0 

 



Looking at this example, we can come up with the following 

algorithm: 

 

Let D1 store the matrix with the initial graph edge 

information. D2 will stored calculated information look at D1. 

 

For k=1 to n { 

 For i=1 to n { 

  For j=1 to n 

   D2[i,j] = min(D1[i,j], D1[i,k]+D1[k,j]) 

 } 

 Copy matrix D2 into D1 

} 

Last D2 matrix will store all the shortest paths. 

 

In order to code this up, we could do so in a static method. We 

need the adjacency matrix of the graph passed into the method 

as a two dimensional double matrix. Then we need the 

auxiliary min and copy methods. 

 

As it turns out, you do NOT need to use 2 separate matrices, 

even though we traced through the algorithm in that manner. 

The reason for this is that when we look up values in the 

"current matrix", we know that those values will be at least as 

good as the values we would have looked up in the "previous 

matrix." Thus, in essence, we will not be overlooking any 

possible shortest path. 

 



Here is the code for these methods: 

 

public class floyd { 

 

     // Runs Floyd Warshall algorithm. Returns the matrix of 

     // shortest paths. 

     public static int[][] shortestpath(int[][] adj) { 

 

          int n = adj.length; 

          int[][] m = new int[n][n]; 

     

          // Initialize m to be graph adjacency matrix 

          copy(m, adj); 

 

          // Add in each vertex as intermediate point. 

          for (int k=0; k<n;k++) { 

 

               // Recalculate estimate for distance from vertex i to j. 

               for (int i=0; i<n; i++) { 

                    for (int j=0; j<n;j++) 

                         m[i][j] = Math.min(m[i][j], m[i][k]+m[k][j]); 

               } 

          } 

          return m; 

  } 

 

  public static void copy(int[][] a, int[][] b) { 

 

       for (int i=0;i<a.length;i++) 

            for (int j=0;j<a.length;j++) 

                 a[i][j] = b[i][j]; 

  } 

} 

 

   



Path Reconstruction in Floyd's Algorithm 
 

When you run Floyd’s, what you’re really doing is initializing 

your distance matrix and path matrix to indicate the use of no 

immediate vertices. (Thus, you are only allowed to traverse 

direct paths between vertices.) 

 

At each step of Floyd’s, you essentially find out whether or not 

using vertex k will improve an estimate between the distances 

between vertex i and vertex j. If it does improve the estimate 

here’s what you need to record: 

 

1) record the new shortest path weight between i and j 

2) record the fact that the shortest path between i and j goes 

through k 

 

#1 is done in the edited adjacency matrix. Hopefully this 

update (with the if statement) is fairly easy to understand. 

 

Here is how #2 is done: 

 

First, it’s important to understand what the path matrix stores. 

In particular, when 

 

path[i][j] = k, that means that in the shortest path from vertex i 

to vertex j, the LAST vertex on that path before you get to 

vertex j is k.  

 

Based on this definition, we must initialize the path matrix as 

follows: 

 

path[i][j] = i if  i!=j and there exists an edge from i to j 

               = null otherwise 

 

 



The reasoning is as follows: 

 

If you want to reconstruct the path at this point of the 

algorithm when you aren’t allowed to visit intermediate 

vertices, the previous vertex visited MUST be the source vertex 

i. null is used to indicate the absence of a path. 

 

Now, once the algorithm starts, here is how we update the path 

matrix 

 

If vertex k doesn’t improve our path estimate, then we don’t 

want to change our path at all and do not update the path 

matrix. 

 

Now, let’s say that vertex k improves our distance estimate in 

between i and j. We want to store the last vertex from the 

shortest path from vertex k to vertex j. This will NOT 

necessarily be k, but rather, it will be path[k][j]. 

 

Using this information, we have the following rule to update 

the path matrix during the kth iteration of Floyd’s: 

 

pathk[i][j] = path(k-1)[i][j], if vertex k doesn’t improve the 

estimate 

 

      = path(k-1)[k][j], otherwise 

 

But, just as you only need to store one copy of the distance 

matrix while you run floyd’s, you only have to store one copy 

of the path matrix as well! Thus, codewise, we’d do the 

following update: 

 



if (D[i][k]+D[k][j] < D[i][j]) { // Update via vertex k 

     D[i][j] = D[i][k]+D[k][j]; 

     path[i][j] = path[k][j]; 

} 

 

Now, the once this path matrix is computed, we have all the 

information necessary to reconstruct the path. Consider the 

following path matrix (indexed from 1 to 5 instead of 0 to 4): 

 

Nil 3 4 5 1 

4 Nil 4  2 1 

4 3 Nil 2 1 

4 3  4 Nil 1 

4 3 4 5 Nil 

 

where the vertices are numbered from 1 to 5. To reconstruct 

the path from 1 to 2, for example, we look at path[1][2]. It has 

a 3. This signifies that on the path from 1 to 2, 3 is the last 

vertex visited before 2. Thus, the path is now, 1…3->2. Now, 

look at path[1][3], this stores a 4. Thus, we find the last vertex 

visited on the path from 1 to 3 is 4. So, our path now looks like 

1…4->3->2. So, we must now look at path[1][4]. This stores a 

5, thus, we know our path is 1…5->4->3->2. When we look at 

path[1][5], we find 1, which means our path is 1->5->4->3->2. 

 

One more example: find the path from vertex 2 to vertex 5. 

 

Path[2][5] = 1 

Path[2][1] = 4 

Path[2][4] = 2 

 

So, the path is 2->4->1->5. 

 

 

 



Transitive Closure 

The transitive closure of a directed graph G contains an edge 

in between each pair of vertices in G that are connected. 

(Connected means that there is a path in G in between the two 

vertices.) In essence, computing a transitive closure of a graph 

gives you complete information about which vertices are 

connected to which other vertices. 

 

We can use a variant of Floyd-Warshall's algorithm for 

shortest paths to determine the transitive closure of a graph G 

as follows: 

 

FloydWarshall(G) 

1) G0 = G 

2) For k=1 to V do 

 a) Gk = Gk-1 

 b) For i=1 to V do 

  i) For j=1 to V do 

   if edge (vi, vk) and (vk, vj) are edges in Gk-1 

    Add (vi, vj) to Gk. 

3) Return GV.  

 

This is the SAME as the other Floyd-Warshall Algorithm, 

except for when we find a non-infinity estimate, we simply add 

an edge to the transitive closure graph. Every round we build  

off the previous paths reached. After iterating through all 

vertices being intermediate vertices, we have tried to connect 

all pairs of vertices i and j through all intermediate vertices k. 



Negative Cycle Detection via Floyd-Warshall's Algorithm 

If there is a negative cycle in a graph, then not all shortest 

distances are well-defined. In most problems, it's given that a 

graph doesn't have a negative weight cycle so that the shortest 

distances are indeed defined. When we run Floyd's on a graph 

that does have negative weight cycles, it will give us shortest 

distances between all pairs of points, but these aren't all 

necessarily meaningful (or correct) if there are negative weight 

cycles, since if we can go from vertex i to vertex k, and then go 

in a loop to lower our weight from k to k, and then go from k 

to j, then in some sense, we could always go take that loop from 

k to k as many times as we wanted and get even shorter 

distances. 

 

After we run Floyd's, if adj[i][i] < 0 for any i, then that means 

there is a negative weight cycle in the graph. 

 

To see if there is a negative weight cycle on a path from i to j, 

what we want to do is check for each vertex k, if k is reachable 

from i, and j is reachable from k, and adj[k][k] < 0. If all three 

things are true for any vertex k, then there is no well-defined 

shortest path from i to j. 

 

 


