

Final Exam Information

Date: 4/28/2022

Time: 1 PM – 3:50 PM

Room: CB2 – 207

The questions will vary from short answer, to tracing, to perhaps a bit of coding.

Since there's a lot to remember algorithm wise, I'll allow you to use four 8.5"x11" sheets of notes, front and back.

Final Exam Review Outline

I. Use of Java Data Structures, Java Features

- a. **ArrayList, LinkedList, ArrayDeque**
- b. **TreeSet, TreeMap**
- c. **HashSet, HashMap**
- d. **PriorityQueue**
- e. **Custom Sorting**

II. Backtracking

III. Data Structures

- a. **Disjoint Sets**
- b. **2-4 Trees**
- c. **Red-Black Trees**
- d. **Skip Lists**

IV. Algorithm Analysis

- a. **Accurate O , Ω , Θ definitions**
- b. **Master Theorem**
- c. **Expectation Definition**
- d. **Binomial Theorem**
- e. **Binary Search Average Case Run Time**
- f. **Make Heap Worst Case Run Time**
- g. **Quick Select Average Case Run Time**

IV. Sorting

- a. **Lower Bound for Adjacent Element Swap Sorts**
- b. **Lower Bound for Comparison Sorts**
- c. **Bucket Sort**
- d. **Counting Sort**
- e. **Radix Sort**

V. Greedy Algorithms

- a. Fractional Knapsack**
- b. Single Room Scheduling**
- c. Multiple Room Scheduling**
- d. Change**

h. Huffman Coding

VI. Unweighted Graphs

- a. Definition & Different Types**
- b. Depth First Search**
- c. Breadth First Search**
- d. Topological Sort**

VII. Weighted Graphs

- a. Dijkstra's**
- b. Prim's**
- c. Kruskal's**
- d. Network Flow**

VIII. Divide and Conquer

- a. Integer Multiplication**
- b. Tromino "Tiling"**
- c. Skyline Problem**
- d. Closest Pair of Points**
- e. Strassen's Algorithm**

VIII. Dynamic Programming

- a. Fibonacci**
- b. Combinations**
- c. Longest Common Subsequence**
- d. Number of Ways to Make Change**
- e. Fewest Number of Coins to Make Change**
- f. 0-1 Knapsack Problem**
- g. Floyd-Warshall's Algorithm and path reconstruction**
- h. Matrix Chain Multiplication**
- i. Edit Distance**
- j. Road Optimization Problem Idea**

IX. Probabilistic Algorithms

- a. Fermat's Theorem**
- b. Miller-Rabin Primality Test**
- c. Rolling Hash Function Calculation and String Matching**