
Past COP 3503 Final Exam Questions

1) (Spr 18) Below is a 6 line code segment in Python that prompts the user to enter the distance

and average speed of a trip and then calculates the time the trip took. For these lines of code, find

each direct dependency (ie line 3 must go before line 5) necessary for the code to run properly.

Draw the corresponding graph using each line as a vertex and each dependency as an edge. Then,

count the number of possible topological sorts of this graph and explain the significance of this

number.

lemons = int(input("How many lemons?\n")) # line 1

sugar = int(input("How many cups of sugar?\n")) # line 2

limitLemons = lemons//3 # line 3

limitSugar = sugar*4 # line 4

pitchers = min(limitLemons, limitSugar) # line 5

print("You can make",pitchers,"pitchers of lemonade.") # line 6

Graph

Number of Top Sorts: ______________

Significance of # of top sorts: ___

__

2) (Sum 14) Dynamic Programming (Matrix Chain Multiplication)

Using the dynamic programming algorithm shown in class, determine the minimum number of

multiplications to calculate the matrix product ABCD, where the dimensions of A, B, C and D

are given below:

A: 2 x 5, B: 5 x 4, C: 4 x 1, D: 1 x 5

 A B C D

A 0

B X 0

C X X 0

D X X X 0

3) (Spr 18) Draw the result of deleting the value 40 from the red-black tree shown below. In the

drawing below, red nodes are indicated with a letter 'R' next to the number stored in the node. In

your solution, please put an 'R' in each node that is red. (Note: use the regular binary tree rules for

deleting a value which is stored in a node with 2 children.) If you explain your thinking, you may

get partial credit for incorrect solutions.

4) (Sum 14) Imagine testing 817 for primality using the Miller-Rabin primality test. In a single

test, you'll successively calculate a randomly chosen base a raised to various powers mod 817.

What are each of those powers?

5) (Spr 18) The country of PaperTrailLandia runs its national presidential election via a very simple

paper voting system. Each citizen submits a single piece of paper with the name of a single person,

for whom they wish to vote. For the purposes of this problem, we assume that each name is a string

of uppercase letters and that each distinct person has a distinct name. Complete the method below

which takes all pieces of paper as a String array, and returns a HashMap<String,Integer> which

maps each person receiving a vote to the number of votes they received.

public static HashMap<String,Integer> getMap(String[] names) {

 HashMap<String,Integer> map = new HashMap<String,Integer>();

 for (int i=0; i< _____________________________; i++) {

 if (______________________________________)

 ___;

 else

 ___;

 }

 return map;

}

6) (Sum 14) Dynamic Programming – Longest Increasing Sequence

Assume that you've already written a method LCS, that calculates the length of the longest

common subsequence between two sequences of integers. (Its prototype is given below.) Write a

method that takes in 1 sequence of integers and calculates its longest increasing sequence. For ease

of implementation, assume that the input only contains distinct integers. Note: You may use both

the Arrays.copyOf and Arrays.sort methods. These are listed below. (Note: The code is pretty

short.)

// Returns an array storing the first newLength elements of original.
int[] copyOf(int[] original, int newLength);

// Sorts the specified array into ascending numeric order.

void sort(int[] a);

public static int lis(int[] seq) {

}

public static int lcs(int[] x, int[] y) {

 int[][] table = new int[x.length+1][y.length+1];

 for (int i = 1; i<=x.length; i++) {

 for (int j = 1; j<=y.length; j++) {

 if (x[i-1] == y[j-1])

 table[i][j] = 1+table[i-1][j-1];

 else

 table[i][j] = Math.max(table[i][j-1], table[i-1][j]);

 }

 }

 return table[x.length][y.length];

}

7) (Sum 14) Dynamic Programming – Zero/One Knapsack Problem

Find the maximum valued knapsack of size 12 or less choosing from the following items (only 1

copy of each item is available). To get credit, please use the algorithm shown in class. Here are

the items from which you are choosing:

Item Weight Value

Apple 3 4

Banana 4 6

Cantaloupe 7 13

Durian 5 9

Emblic 2 5

Fig 1 3

Show the algorithm by filling in the following table:

Item 1 2 3 4 5 6 7 8 9 10 11 12

Apple

Banana

Cantaloupe

Durian

Emblic

Fig

The correct answer to the query should be in the bottom right square of the table.

8) (Spr 18) In class, a dynamic programming algorithm was covered that efficiently determines

the fewest number of coins necessary to make change for a particular number of cents given the

valid denominations of coins (and an infinite supply of each). In this algorithm, the array entry for

dp[value] simply stores the fewest number of coins necessary to make change for value number of

cents. For this problem, fill in this array for indexes 1 to 22, given that the valid denominations of

coins are 1 cent, 3 cents, 8 cents and 14 cents.

index 0 1 2 3 4 5 6 7 8 9 10 11

mincoins 0

index 12 13 14 15 16 17 18 19 20 21 22

mincoins

You are given n k-sided fair dice, each labeled 1, 2, 3, …, k. You roll all of them. Then, separate

out the ones that show k. Take the rest and roll them all again. Then, separate out the ones of these

that show k, and roll the rest again. Repeat this process until you've separated all the dice out (ie,

they all show k). The question we want to analyze is the number of times we expect to roll before

completing the game.

9) (Spr 18) One way to analyze this is to write a simulation, run it many times and take the average.

The latter portion of this is fairly trivial, so for this question, you will simply write a single Java

method that takes in n, the number of dice, and k, the number of sides on each dice, simulates this

process, and returns the number of turns it took to complete a single simulation of the game. Fill

in the method signature given below. Assume that you have access to a static class variable r, that

is of type Random, which you can use to generate random integers.

public static Random r;

public static int numTurnsSim(int n, int k) {

}

10) (Spr 18) Let the dice have k sides each and let T(n) equal the expected number of turns to

complete the simulation described previous. A recurrence relation that T(n) satisfies is as follows:

𝑇(0) = 0

𝑇(𝑛) = 1 + ∑[(
𝑛
𝑖

) (
1

𝑘
)

𝑖

(
𝑘 − 1

𝑘
)

𝑛−𝑖

𝑇(𝑛 − 𝑖)]

𝑛

𝑖=0

In words, explain why this formula is correct. In your explanation, please explain what 1

represents, what the summation index i, represents and what T(n-i) represents. (Of course, explain

what each part represents and why their interaction is the way that it is.) Note: One issue with this

formula is that a T(n) term appears on the right hand side. But, if one were to solve this recurrence,

we can easily take care of this problem by subtracting that term to the left hand side and factoring

out T(n). Then, we would have a factor by which we could divide both sides of the resulting

equation.

11) (Sum 14) Graphs – Topological Sort

Alice has to complete items 1 through 10. The following ordered pairs show the dependency

between the items she must complete. Namely, for each ordered pair (a, b) shown below, she must

complete item a before item b.

(2, 7), (8, 3), (9, 2), (4, 5), (4, 1), (4, 7) and (6, 10).

Show the ordering of the items produced by the algorithm shown in class that builds the list from

the front and always adds "safe" nodes iteratively. When choosing between multiple possible

"safe" nodes, always add the lowest numbered one first.

_____ , _____ , _____ , _____ , _____ , _____ , _____ , _____ , _____ , _____

12) (Sum 14) Algorithm Design – Dynamic Programming

Describe a dynamic programming algorithm (in words) to solve the following problem:

Soccer players are ordered 0, 1, 2, …, n – 1, where n is a positive integers less than or equal to

100. Each player i (0 ≤ i ≤ n-2) can pass to any player j such that j > i. The probability the pass

will succeed is prob[i][j]. (Assume that this information is given in the input.) As with all

probabilities, note that 0 ≤ prob[i][j] ≤ 1, for all 0 ≤ i < j ≤ n – 1.

We are allowed to choose any sequences of passes in order to move the ball from player 0 to player

n – 1. (This sequence will necessarily be some subsequence of 0, 1, 2, …, n – 1, since all the

players can only pass the ball in "one direction.") If all players act optimally, design an algorithm

that calculates the probability that player n – 1 successfully receives the ball.

