
The Matrix Chain Problem

Given a chain of matrices to multiply, determine the how the

matrices should be parenthesized to minimize the number of

single element multiplications involved.

First off, it should be noted that matrix multiplication is

associative, but not commutative. But since it is associative, we

always have:

((AB)(CD)) = (A(B(CD)))

or equality for any such grouping as long as the matrices in the

product appear in the same order.

It may appear on the surface that the amount of work done

won't change if you change the parenthesization of the

expression, but we can prove that is not the case with the

following example:

Let A be a 2x10 matrix

Let B be a 10x50 matrix

Let C be a 50x20 matrix

Note that any matrix multiplication between a matrix with

dimensions ixj and another with dimensions jxk will perform

ixjxk element multiplications creating an answer that is a

matrix with dimensions ixk. Also note that the second

dimension in the first matrix and the first dimension in the

second matrix must be equal in order to allow matrix

multiplication.

Consider computing A(BC):

multiplications for (BC) = 10x50x20 = 10000, creating a

10x20 answer matrix

multiplications for A(BC) = 2x10x20 = 400,

Total multiplications = 10000 + 400 = 10400.

Consider computing (AB)C:

multiplications for (AB) = 2x10x50 = 1000, creating a 2x50

answer matrix

multiplications for (AB)C = 2x50x20 = 2000,

Total multiplications = 1000 + 2000 = 3000, a significant

difference.

Thus, the goal of the problem is given a chain of matrices to

multiply, determine the fewest number of multiplications

necessary to compute the product. We will formally define the

problem below:

Let A = A0 A1 ... An-1

Let Ni,j denote the minimal number of multiplications

necessary to find the product Ai Ai+1 ... Aj. And let dixdi+1

denote the dimensions of matrix Ai.

We must attempt to determine the minimal number of

multiplications necessary(N0,n-1) to find A, assuming that we

simply do each single matrix multiplication in the standard

method.

The key to solving this problem is noticing the sub-problem

optimality condition:

If a particular parenthesization of the whole product is

optimal, then any sub-parenthesization in that product is

optimal as well. Consider the following illustration:

Assume that we are calculating ABCDEF and that the

following parenthesization is optimal:

(A (B ((CD) (EF))))

Then it is necessarily the case that

(B ((CD) (EF)))

is the optimal parenthesization of BCDEF.

Why is this?

Because if it wasn't, and say (((BC) (DE)) F) was better, then it

would also follow that

(A (((BC) (DE)) F)) was better than

(A (B ((CD) (EF)))), contradicting its optimality.

This line of reasoning is nearly identical to the reasoning we

used when deriving Floyd-Warshall's algorithm.

Now, we must make one more KEY observation before we

design our algorithm:

Our final multiplication will ALWAYS be of the form

(A0 A1 ... Ak) (Ak+1 Ak+2 ... An-1)

In essence, there is exactly one value of k for which we should

"split" our work into two separate cases so that we get an

optimal result. Here is a list of the cases to choose from:

(A0) (A1 Ak+2 ... An-1)

(A0 A1) (A2 Ak+2 ... An-1)

(A0 A1A2) (A3 Ak+2 ... An-1)

...

(A0 A1 ... An-3) (An-2 An-1)

(A0 A1 ... An-2) (An-1)

Basically, count the number of multiplications in each of these

choices and pick the minimum. One other point to notice is

that you have to account for the minimum number of

multiplications in each of the two products.

Consider the case multiplying these 4 matrices:

A: 2x4

B: 4x2

C: 2x3

D: 3x1

1. (A)(BCD) - This is a 2x4 multiplied by a 4x1,

 so 2x4x1 = 8 multiplications, plus whatever

 work it will take to multiply (BCD).

2. (AB)(CD) - This is a 2x2 multiplied by a 2x1,

 so 2x2x1 = 4 multiplications, plus whatever

 work it will take to multiply (AB) and (CD).

3. (ABC)(D) - This is a 2x3 multiplied by a 3x1,

 so 2x3x1 = 6 multiplications, plus whatever

 work it will take to multiply (ABC).

Thus, we can state the following recursive formula:

Ni,j = min value of Ni,k + Nk+1,j + didk+1dj+1, over all

 valid values of k.

One way we can think about turning this recursive formula

into a dynamic programming solution is by deciding which

sub-problems are necessary to solve first. Clearly it's necessary

to solve the smaller problems before the larger ones. In

particular, we need to know Ni,i+1, the number of

multiplications to multiply any adjacent pair of matrices

before we move onto larger tasks. Similarly, the next task we

want to solve is finding all the values of the form Ni,i+2, then

Ni,i+3, etc.

Iterative Algorithm

1) Initialize N[i][i] = 0, and all other entries in N to .

2) for i=1 to n-1 do the following

 2i) for j=0 to n-1-i do

 2ii) for k=j to j+i-1

 2iii) if (N[j][j+i-1] >

 N[j][k]+N[k+1][j+i-1]+djdk+1di+j)

N[j][j+i-1]=

 N[j][k]+N[k+1][j+i-1]+djdk+1di+j

Here is the example we worked through in class:

Matrix Dimensions

A 2x4

B 4x2

C 2x3

D 3x1

E 1x4

 A B C D E

A 0 16 28 22 30

B 0 24 14 30

C 0 6 14

D 0 12

E 0

First we determine the number of multiplications necessary for

2 matrices:

AxB uses 2x4x2 = 16 multiplications

BxC uses 4x2x3 = 24 multiplications

CxD uses 2x3x1 = 6 multiplications

DxE uses 3x1x4 = 12 multiplications

Now, let's determine the number of multiplications necessary

for 3 matrices

(AxB)xC uses 16 + 0 + 2x2x3 = 28 multiplications

Ax(BxC) uses 0 + 24 + 2x4x3 = 48 multiplications, so 28 is min.

(BxC)xD uses 24 + 0 + 4x3x1 = 36 multiplications

Bx(CxD) uses 0 + 6 + 4x2x1 = 14 multiplications, is 14 is min.

(CxD)xE uses 6 + 0 + 2x1x4 = 14 multiplications

Cx(DxE) uses 0 + 12 + 2x3x4 = 36, so 14 is min.

Four matrices next:

Ax(BxCxD) uses 0 + 14 + 2x4x1 = 22 multiplications

(AxB)x(CxD) uses 16 + 6 + 2x2x1 = 26 multiplications

(AxBxC)xD uses 28 + 0 + 2x3x1 = 34 multiplications, 22 is min.

Bx(CxDxE) uses 0 + 14 + 4x2x4 = 46 multiplications

(BxC)x(DxE) uses 24 + 12 + 4x3x4 = 84 multiplications

(BxCxD)xE uses 14 + 0 + 4x1x4 = 30 multiplications, 30 is min.

For the answer:

Ax(BxCxDxE) uses 0 + 30 + 2x4x4 = 62 multiplications

(AxB)x(CxDxE) uses 16 + 14 + 2x2x4 = 46 multiplications

(AxBxC)x(DxE) uses 28 + 12 + 2x3x4 = 64 multiplications

(AxBxCxD)xE uses 22 + 0 + 2x1x4 = 30 multiplications

Answer = 30 multiplications

Recursive Algorithm with Memoization

When coding, the recursive algorithm memoized tends to be

easier for most people. The recursive algorithm takes in two

indexes, start and end, representing the consecutive matrices to

multiply for that recursive case. The algorithm is simply to try

each split point and take the best one. Assume that the method

sketch shown below has access to all the dimensions of each

matrix and that memo is the memoization array. In this code,

let d[i][0] store the # of rows in matrix i and d[i][1] store the

number of columns in matrix i:

int solveRec(int start, int end) {

 if (start == end) return 0;

 if (memo[start][end] != -1) return memo[start][end];

 int res = solveRec(start, end-1) + d[start][0]*d[end][0]*d[end][0];

 for (int i=start; i<end; i++) {

 int tmp = solveRec(start, i) + solveRec(i+1, end) +

 d[start][0]*d[i][1]*d[end][1];

 res = Math.min(res, tmp);

 }

 return memo[start][end] = res;

}

