
Longest Common Subsequence Problem

The problem is to find the longest common subsequence in two

given strings. A subsequence of a string is simply some subset

of the letters in the whole string in the order they appear in the

string. In order to denote a subsequence, you could simply

denote each array index of the string you wanted to include in

the subsequence. For example, given the string

"GOODMORNING", the subsequence that corresponds to

array indexes 1, 3, 5, and 6 is "ODOR."

Here is the basic idea behind solving the problem:

If the last characters of both strings s1 and s2 match, then the

LCS will be one plus the LCS of both of the strings with their

last characters removed.

If the last characters of both strings do NOT match, then the

LCS will be one of two options:

1) The LCS of x and y without its last character.

2) The LCS of y and x without its last character.

Thus, in this case we will simply take the maximum of these

two values. Also, we could just as easily have compared the

first two characters of x and y and used a similar technique.

Let's examine the code for both the recursive solution to LCS

and the dynamic programming solution:

// Arup Guha

// 3/2/05

// The method below solves the longest common subsequence

// problem recursively.

import java.io.*;

public class LCS {

 // Precondition: Both x and y are non-empty strings.

 // 0 < len1 <= x.length() , 0 < len2 <= y.length

 public static int lcsrec(String x, String y) {

 // If one of the strings has one character, search for that

 // character in the other string and return the appropriate

 // answer.

 if (x.length() == 1)

 return find(x.charAt(0), y);

 if (y.length() == 1)

 return find(y.charAt(0), x);

 // Solve the problem recursively.

 // Corresponding last characters match.

 if (x.charAt(len1-1) == y.charAt(len2-1))

 return 1+lcsrec(x.substring(0, x.length()-1),

 y.substring(0,y.length()-1));

 // Corresponding characters do not match.

 else

 return max(lcsrec(x, y.substring(0, y.length()-1)),

 lcsrec(x.substring(0,x.length()-1), y));

 }

Now, our goal will be to take this recursive solution and build a

dynamic programming solution. The key here is to notice that

the heart of each recursive call is the pair of indexes, telling us

which prefix string we are considering. In some sense, we can

build the answer to "longer" LCS questions based on the

answers to smaller LCS questions. This can be seen trace

through the recursion at the very last few steps.

If we make the recursive call on the strings RACECAR and

CREAM, once we have the answers to the recursive calls for

inputs RACECAR and CREA and the inputs RACECA and

CREAM, we can use those two answers and immediately take

the maximum of the two to solve our problem!

Thus, think of storing the answers to these recursive calls in a

table, such as this:

 R A C E C A R

C

R

E

A XXX

M

In this chart for example, the slot with the XXX will store an

integer that represents the longest common subsequence of

CREA and RAC. (In this case 2.)

Now, let's think about building this table. First we will

initialize the first row and column:

 R A C E C A R

C 0 0 1 1 1 1 1

R 1

E 1

A 1

M 1

Basically, we search for the first letter in the other string, when

we get there, we put a 1, and all other values subsequent to that

on the row or column are also one. This corresponds to the

base case in the recursive code.

Now, we simply fill out the chart according to the recursive

rule:

1) Check to see if the "last" characters match. If so, delete this

and take the LCS of what's left and add 1 to it.

2) If not, then we try to possibilities, and take the maximum of

those two possibilities. (These possibilities are simply taking

the LCS of the whole first word and the second work minus the

last letter, and vice versa.)

Here is the chart:

 R A C E C A R

C 0 0 1 1 1 1 1

R 1 1 1 1 1 1 2

E 1 1 1 2 2 2 2

A 1 2 2 2 2 3 3

M 1 2 2 2 2 3 3

Now, let's use this to develop the dynamic programming code.

A little trick when coding is to add an extra row and column to

the beginning to indicate an "empty character" so that you

don't have to initialize the first row and column of the DP

table:

 R A C E C A R

 0 0 0 0 0 0 0 0

C 0 0 0 1 1 1 1 1

R 0 1 1 1 1 1 1 2

E 0 1 1 1 2 2 2 2

A 0 1 2 2 2 2 3 3

M 0 1 2 2 2 2 3 3

The 0s are naturally filled in (in Java) when creating your

array, so you can start your loops for index 1 into your DP

array instead of index 0. This allows you to safely index into i-1

and j-1 without worrying about going out of bounds. One

caveat to using this method is that now, the letter stored in

index 0 of each string really corresponds to index 1 in the DP

array.

