
The 0-1 Knapsack Problem

The difference between this problem and the fractional one is

that you can't take a fraction of an item. You either take the

whole thing or none of it. So here, is the problem formally

described:

Your goal is to maximize the value of a knapsack that can hold

at most W units worth of goods from a list of items I0, I1, ... In-

1. Each item has two attributes:

1) Value - let this be vi for item Ii.

2) Weight - let this be wi for item Ii.

Now, instead of being able to take a certain weight of an item,

you can only either take the item or not take the item.

The naive way to solve this problem is to cycle through all 2n

subsets of the n items and pick the subset with a legal weight

that maximizes the value of the knapsack. But, we can find a

dynamic programming algorithm that will USUALLY do

better than this brute force technique.

Our first attempt might be to characterize a sub-problem as

follows:

Let Sk be the optimal subset of elements from {I0, I1,... Ik}. But

what we find is that the optimal subset from the elements {I0,

I1,... Ik+1} may not correspond to the optimal subset of elements

from {I0, I1,... Ik} in any regular pattern. Basically, the solution

to the optimization problem for Sk+1 might NOT contain the

optimal solution from problem Sk.

To illustrate this, consider the following example:

Item Weight Value

I0 3 10

I1 8 4

I2 9 9

I3 8 11

The maximum weight the knapsack can hold is 20.

The best set of items from {I0, I1, I2} is {I0, I1, I2} but the best

set of items from {I0, I1, I2, I3} is {I0, I2, I3}. In this example,

note that this optimal solution, {I0, I2, I3}, does NOT build upon

the previous optimal solution, {I0, I1, I2}. (Instead it build's

upon the solution, {I0, I2}, which is really the optimal subset of

{I0, I1, I2} with weight 12 or less.)

So, now, we must rework our example. In particular, after trial

and error we may come up with the following idea:

Let B[k, w] represent the maximum total value of a subset Sk

with weight w. Our goal is to find B[n, W], where n is the total

number of items and W is the maximal weight the knapsack

can carry.

Using this definition, we have B[0, w] = v0, if w >= w0.

 = 0, otherwise

Now, we can derive the following relationship that B[k, w]

obeys:

B[k, w] = B[k - 1,w], if wk > w

 = max { B[k - 1,w], B[k - 1,w - wk] + vk}

In English, here is what this is saying:

1) The maximum value of a knapsack with a subset of items

from {I0, I1, ... Ik} with weight w is the same as the maximum

value of a knapsack with a subset of items from {I0, I1, ... Ik-1}

with weight w, if item k weighs greater than w.

Basically, you can NOT increase the value of your knapsack

with weight w if the new item you are considering weighs more

than w – because it WON'T fit!!!

2) The maximum value of a knapsack with a subset of items

from {I0, I1, ... Ik} with weight w could be the same as the

maximum value of a knapsack with a subset of items from {I1,

I2, ... Ik-1} with weight w, if item k should not be added into the

knapsack.

OR

3) The maximum value of a knapsack with a subset of items

from {I0, I1, ... Ik} with weight w could be the same as the

maximum value of a knapsack with a subset of items from {I0,

I1, ... Ik-1} with weight w-wk, plus item k.

You need to compare the values of knapsacks in both case 2

and 3 and take the maximal one.

Recursively, we will STILL have an O(2n) algorithm. But,

using dynamic programming, we simply have to do a double

loop - one loop running n times and the other loop running W

times.

Question: In which cases would a running time of O(nW) be

worse than a running time of O(2n)?

Here is a dynamic programming algorithm to solve the 0-1

Knapsack problem. We will store our results in the array dp.

Input: S, a set of n items as described earlier, max the total

weight of the knapsack. Assume that the weights and values

are stored in separate arrays named weight and value,

respectively.

Output: The maximal value of items in a valid knapsack. (The

array dp will store the maximal values of all knapsacks up to

weight max.

int[] dp = new int[max+1];

Arrays.fill(dp, 0);

for (int k=0; k<n; k++)

 for (int w = max; w>= weight[k]; w--)

 dp[w] = Math.max(dp[w], dp[w – weight[k]] + value[k])

Why is the inner loop running backwards?

Since our DP array isn’t two dimensional (namely, instead of

storing each row of the table, we store the last row and make

the updates into the current row directly, we want to make

sure that when we look in the dp array, we are not building off

answers that were changed in the current loop iteration. By

going backwards, we are only editing dp[w] based on dp[w-

weight[k]] which has yet to be changed.

If we were to run the loop forwards, then if dp[w-weight[k]]

was changed by using item k once, then dp[w] may use item k

MORE THAN ONCE!!!

Thus, specifically, running the inner loop backwards prevents

us from taking an item more than once.

Note on run time: Clearly the run time of this algorithm is

O(nW), based on the nested loop structure and the simple

operation inside of both loops. When comparing this with the

previous O(2n), we find that depending on W, either the

dynamic programming algorithm is more efficient or the brute

force algorithm could be more efficient. (For example, for n=5,

W=100000, brute force is preferable, but for n=30 and

W=1000, the dynamic programming solution is preferable.)

Let's run through an example:

i Item wi vi

0 I0 4 6

1 I1 2 4

2 I2 3 5

3 I3 1 3

4 I4 6 9

5 I5 4 7

W = 10

Item 0 1 2 3 4 5 6 7 8 9 10

0 0 0 0 0 6 6 6 6 6 6 6

1 0 0 4 4 6 6 10 10 10 10 10

2 0 0 4 5 6 9 10 11 11 15 15

3 0 3 4 7 8 9 12 13 14 15 18

4 0 3 4 7 8 9 12 13 14 16 18

5 0 3 4 7 8 10 12 14 15 16 19

How do we allow taking unlimited copies of an item?
Running the inner loop forwards will do the trick, since every

previous item in the dp array has already been updated

potentially using a copy of item k. This means that multiple

copies of k can build up, if this is optimal.

The extra program Candy Store illustrates this idea.

