
The Change Problem 

 
"The Change Store" was an old SNL skit (a pretty dumb 

one...) where they would say things like, "You need change for 

a 20? We'll give you two tens, or a ten and two fives, or four 

fives, etc." 

 

If you are a dorky minded CS 2 student, you might ask 

yourself (after you ask yourself why those writers get paid so 

much for writing the crap that they do), "Given a certain 

amount of money, how many different ways are there to make 

change for that amount of money?" 

 

Let us simplify the problem as follows: 

 

Given a positive integer n, how many ways can we make 

change for n cents using pennies, nickels, dimes and quarters? 

 

Recursively, we could break down the problem as follows: 

 

To make change for n cents we could: 

1) Give the customer a quarter. Then we have to make change 

for n-25 cents 

2) Give the customer a dime. Then we have to make change for 

n-10 cents 

3) Give the customer a nickel. Then we have to make change 

for n-5 cents 

4) Give the customer a penny. Then we have to make change 

for n-1 cents. 

 

If we let T(n) = number of ways to make change for n cents, we 

get the formula 

 

T(n) = T(n-25)+T(n-10)+T(n-5)+T(n-1) 



Is there anything wrong with this? 

 

If you plug in the initial condition T(1) = 1, T(0)=1, T(n)=0 if 

n<0, you'll find that the values this formula produces are 

incorrect. (In particular, for this recurrence relation T(6)=3, 

but in actuality, we want T(6)=2.) 

 

So this can not be right. What is wrong with our logic? In 

particular, it can been seen that this formula is an 

OVERESTIMATE of the actual value. Specifically, this counts 

certain combinations multiple times. In the above example, the 

one penny, one nickel combination is counted twice. Why is 

this the case? 

The problem is that we are counting all combinations of coins 

that can be given out where ORDER matters. (We are 

counting giving a penny then a nickel separately from giving a 

nickel and then a penny.) 

 

We have to find a way to NOT do this. One way to do this is 

IMPOSE an order on the way the coins are given. We could do 

this by saying that coins must be given from most value to least 

value. Thus, if you "gave" a nickel, afterwards, you would only 

be allowed to give nickels and pennies. 

 

Using this idea, we need to adjust the format of our recursive 

computation: 

 

To make change for n cents using the largest coin d, we could 

 

1)If d is 25, give out a quarter and make change for n-25 cents 

using the largest coin as a quarter. 

2)If d is 10, give out a dime and make change for n-10 cents 

using the largest coin as a dime. 

3)If d is 5, give out a nickel and make change for n-5 cents 

using the largest coin as a nickel. 



4)If d is 1, we can simply return 1 since if you are only allowed 

to give pennies, you can only make change in one way. 

 

Although this seems quite a bit more complex than before, the 

code itself isn't so long. Let's take a look at it: 

 

public static int makeChange(int n, int d) { 

 

    if (n < 0) 

        return 0; 

    else if (n==0) 

        return 1; 

    else  { 

        int sum = 0; 

        switch (d) { 

            case 25: sum+=makeChange(n-25,25); 

    case 10: sum+=makeChange(n-10,10); 

            case 5: sum += makeChange(n-5,5); 

            case 1: sum++; 

         } 

         return sum; 

     } 

} 

 

There's a whole bunch of stuff going on here, but one of the 

things you'll notice is that the larger n gets, the slower and 

slower this will run, or maybe your computer will run out of 

stack space.  Further analysis will show that many, many 

method calls get repeated in the course of a single initial 

method call. 

 

In dynamic programming, we want to AVOID these 

reoccuring calls. To do this, rather than making those three 

recursive calls above, we could store the values of each of those 

in a two dimensional array.  



 

Our array could look like this 

 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

5 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 

10 1 1 1 1 2 2 2 2 2 4 4 4 4 4 6 

25 1 1 1 1 2 2 2 2 2 4 4 4 4 4 6 

 

 

Essentially, each row label stands for the number of cents we 

are making change for and each column label stands for the 

largest coin value allowed to make change. 

 

(Note: The lightly colored squares with 1, 2 and 1 are added to 

calculate the lightly colored square with 4, based on the 

recursive algorithm.) 

 

Now, let us try to write some code that would emulate building 

this table by hand, from left to right. 

 

  public static int makeChangedyn(int n, int d) { 

 

      // Take care of simple cases. 

      if (n < 0) 

          return 0; 

      else if ((n>=0) && (n < 5)) 

          return 1; 

     

       // Build table here. 

       else { 

 

            int[] denominations = {1, 5, 10, 25}; 

            int[][] table = new int[4][n+1]; 

     



            // Initialize table 

            for (int i=0; i<n+1;i++) 

                table[0][i] = 1; 

            for (int i=0; i<5; i++) { 

                table[1][i] = 1; 

                table[2][i] = 1; 

                table[3][i] = 1; 

            } 

            for (int i=5;i<n+1;i++) { 

                table[1][i] = 0; 

                table[2][i] = 0; 

                table[3][i] = 0; 

            } 

 

           // Fill in table, row by row.  

           for (int i=1; i<4; i++) { 

                for (int j=5; j<n+1; j++) { 

                    for (int k=0; k<=i; k++) { 

                        if ( j >= denominations[k]) 

                             table[i][j] += table[k][j - denominations[k]]; 

                    }  

                } 

            }         

            return table[lookup(d)][n];  

       } 

  } 

 

An alternate way to code this up is to realize that we DON'T 

need to add many different cases up together. Instead, we note 

that the number of ways to make change for n cents using 

denomination d can be split up into counting two groups: 

 

 

 

 



1) The number of ways to make change for n cents using 

denominations LESS than d 

 

2) The number of ways to make change for n cents using at 

least ONE coin of denomination d. 

 

The former is simply the value in the table that is directly 

above the one we are trying to fill. 

 

The latter is the value on the table that is on the same row, by d 

spots to the left. 

 

Visually, consider just adding two values from our previous 

example: 

 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

5 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 

10 1 1 1 1 2 2 2 2 2 4 4 4 4 4 6 

25 1 1 1 1 2 2 2 2 2 4 4 4 4 4 6 

 

(Also note that the lightly colored three was computed by 

adding the 1 and 2 that were lightly colored in the previous 

example.) 

 

Here is the code to implement this slight change, just substitute 

this line for the for loop with k in the previous code: 

                         

  if ( j >= denominations[i]) 

         table[i][j] = table[i-1][j] + table[i][j - denominations[k]]; 

  else 

         table[i][j] = table[i-1][j] 

                 
 


