
Finding the Closest Pair of Points 

 
Problem: Given n ordered pairs (x1 , y1), (x2 , y2), ... , (xn , yn), 

find the distance between the two points in the set that are 

closest together. 

 

The brute force algorithm is as follows: 

 

Iterate through all possible pairs of points, calculating the 

distance between each of these pairs. Any time you see a 

distance shorter than the shortest distance seen, update the 

shortest distance seen. 

 

Since computing the distance between two points takes O(1) 

time, and there are a total of 
2

)1( nn
= (n2) distinct pairs of 

points, it follows that the running time of this algorithm is 

(n2). 

 

Can we do better? 

 

Here's the idea: 

 

1) Split the set of n points into two halves by a vertical line. 

(We can do this by sorting all the points by their x-coordinate 

and then picking the middle point and drawing a vertical line 

just to the left or right of it.) 

2) Recursively call the function to solve the problem on both 

sets of points. 

3) Return the smaller of the two values. 

 

 

What's the problem with this idea? 

 

 



The problem is that the actual shortest distance between any 

two of the original points MIGHT BE between a point from the 

first set and a point in the second set! Consider this situation: 
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Here we have four points separated into groups A and B. Let 

the points be labeled 1, 2, 3 and 4 from left to right. Notice that 

the minimum of the distances between points 1 and 2 and then 

points 3 and 4 is NOT the actual shortest possible distance 

between points, since points 2 and 3 are much closer to one 

another. 

 

Thus, we must adapt our approach: 

 

In step 3, we can "save" the smaller of the two values, (we'll 

call this ), then, we have to check to see if there are points (one 

in each group) that are closer than  apart. 

 

Do we need to search through all possible pairs of points from 

the two different sides? 

 

Probably not. We must only consider points that are within a 

distance of  to our dividing line.              
                                                                 

                |   --------------------------- 

*     *    |  *    * 

           | 

   A     B 

         ------------------------------------------------- 
                                 

 



 

Still, however, one could construct a case where ALL the 

points on each side are within  of the vertical line: 
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So, technically speaking, this case is as bad as our original idea 

where we'd have to compare each pair of points to one another 

from the different groups. 

 

But, wait, is it really necessary to compare each point on one 

side with every other point on every other side??? 

 

Consider the following rectangle around the dividing line that 

is constructed by eight /2 x /2 squares. Note that the diagonal 

of each square is 2 , which is less than . Since each 

square lies on a single side of the dividing line, at most one 

point lies in each box, because if two points were within a 

single box the distance between those two points would be less 

than , contradicting the definition of . This means, that there 

are at MOST 7 other points that could possibly be a distance of 

less than  apart from a given point, that have a greater y 

coordinate than that point. (We assume that our point is on the 

bottom row of this grid; we draw the grid that way.) 

 

    

    

 

Now, we come to the issue of how do we know WHICH 7 

points to compare a given point with??? 



The idea is as follows: as you are processing the points 

recursively, SORT them based on the y-coordinate. Then, for a 

given point within the strip, you only need to compare with the 

next seven points! 

 

Here is a pseudocode version of the algorithm. (I have 

simplified the pseudocode from the book so that it's easier to 

get an overall understanding of the flow of the algorithm.) 

 

closest_pair(p) { 

  mergesort(p, 1, n) // n is number of points 

  return rec_cl_pair(p, 1, 2) 

} 

 

rec_cl_pair(p, i, j) { 

   

  if (j - i < 3)  { \\ If there are three points or less... 

      mergesort(p, i, j) 

      return shortest_distance(p[i], p[i+1], p[i+2]) 

  } 

 

  xval = p[(i+j)/2].x 

  deltaL = rec_cl_pair(p, i, (i+j)/2) 

  deltaR = rec_cl_pair(p, (i+j)/2+1, j) 
  delta = min(deltaL, deltaR) 

  merge(p, i, k, j) 

 

  v = vert_strip(p, xval, delta) 

 

  for k=1 to size(v)-1 

    for s = (k+1) to min(t, k+7) 

      delta = min(delta, dist(v[k], v[s])) 

  return delta  

} 

 



Let's trace through an example with the following 9 points: 

 

(0, 0), (1, 6), (2, 8), (2, 3), (3, 4), (5, 1), (6, 7), (7, 4) and (8, 0). 

 

These are already sorted these by the x-coordinate. We will 

split the points in half, with the first four in the first half and 

the last five in the last half. 

 

So, we must recursively call rec_cl_pair on the set 

 

{(0, 0), (1, 6), (2, 8), (2, 3)} 

 

This results in two more recursive calls, to rec_cl_pair on the 

sets {(0, 0), (1, 6)} and {(2, 8), (2, 3)}. The first call simply 

returns the distance 37 and sorts the points by y-coordinate 

which leaves them unchanged. The second call returns 5 and 

swaps the order of the points (2, 3), (2, 8) in the array p. 

 

Then, delta is set to 5, and the points are all merged by y 

coordinate: (0, 0), (2, 3), (1, 6), (2, 8). (All of these are then 

copied into the v array since all points are within a distance of 

5 of the line x=1.) 

 

Since we have less than 7 points, all points are compared and it 

is discovered that (1, 6) and (2, 8) are a distance of 5 apart. 

 

Now, let's call rec_cl_pair on the set  

 

{(3, 4), (5, 1), (6, 7), (7, 4), (8, 0)} 

 

We first make two recursive calls to the sets: {(3, 4), (5, 1)} and 

{(6, 7), (7, 4), (8, 0)}. The first will result in deltaL being set to 

13 and the points getting sorted by y: {(5, 1), (3, 4)}. 



The second results in delta being set to 10  and the points 

getting sorted by y: {(8, 0), (7, 4), (6, 7)}. We then merge all of 

these points: {(8, 0),  (5, 1), (3, 4), (7, 4), (6, 7)}. All of these 

points get copied into v. 

 

Then, we discover that NO pair of points beats the original 

deltaR of 10 . This is then the closest distance between any 

pair of points within the second set of data. 

 

Finally, we must merge ALL the points together by y-

coordinate: 

 

(0, 0), (8, 0), (5, 1), (2, 3), (3, 4), (7, 4) , (1, 6), (6, 7), (2, 8) 

 

this time, we only pick those points that are within 10  of the 

line x=2 to copy into v. These points are: 

 

(0, 0), (5, 1), (2, 3), (3, 4), (1, 6), (2, 8) 

 

Now, we scan through all pairs to discover that the shortest 

distance between any of the two points is 2 . 

 

 

 

 

 

 



Strassen’s algorithm:Matrix multiplication 
 

The standard method of matrix multiplication of two n x n 

matrices takes T(n) = O(n3). 

 

The following algorithm multiplies nxn matrices A and B: 

 

// Initialize C. 

for i = 1 to n 

  for j = 1 to n 

    for k = 1 to n 

          C [i, j] += A[i, k] * B[k, j]; 
 

Stassen’s algorithm is a Divide-and-Conquer algorithm that 

beat the bound. The usual multiplication of two n x n matrices 

takes 
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if ABC  , then we have the following: 

 

2112111111 babac     

2212121112 babac      

2122112121 babac      

2222122122 babac      
 

8     n/2 * n/2 matrix multiples plus 

4     n/2 * n/2 matrix additions 

 

T(n) = 8T(n/2) + O(n2) 

Plug in       a = 8, b = 2, k = 2   →   logb
a  =3    →   T(n)= O(n3) 



Strassen showed how two matrices can be multiplied using 

only 7 multiplications and 18 additions: 

 

Consider calculating the following 7 products: 

 

q1 = (a11 + a22) * (b11 + b22) 

q2 = (a21 + a22) * b11 

q3 = a11*( b12 – b22) 

q4 = a22 * (b21 – b11) 

q5 = (a11 + a12) * b22  

q6 = (a21 – a11) * (b11 + b12) 

q7 = (a12 – a22) * (b21 + b22) 

 

It turns out that 

 

c11 = q1 + q4 – q5 + q7 

c12 = q3 + q5  

c21 = q2 + q4  
c22 = q1 + q3 – q2 + q6 

 

Note: I haven't actually looked at Strassen's paper. This is just 

from the text. In going through other books, I saw a different 

set of products than these. (I also saw these in other books too 

though.) The different set of products I saw required 24 

additions instead of 18, so this is a slight improvement (though 

not asymptotic) over the other algorithm I saw in a different 

book. 

 



Let's verify a couple of these: 

 

q1 + q4 – q5 + q7 = (a11 + a22) * (b11 + b22) + a22 * (b21 – b11) 

                              – (a11 + a12) * b22 + (a12 – a22) * (b21 + b22) 

 

= a11b11 + a11b22 + a22b11 + a22b22 + a22b21 – a22b11 – a11b22 – a12b22 

   + a12b21 + a12b22 – a22b21 – a22b22 

 

= a11b11 + a12b21 , since everything else cancels out. 

 

q3 + q5 = a11*( b12 – b22) + (a11 + a12) * b22  

             = a11b12 – a11b22 + a11b22 + a12b22 

      = a11b12 + a12b22 

 

I have no idea how Strassen came up with these combinations. 

He probably realized that he wanted to determine each 

element in the product using less than 8 multiplications. From 

there, he probably just played around with it. In the 

algorithms text by Cormen, Leiserson and Rivest, they show 

how one could derive these products. 

 

If we let T(n) be the running time of Strassen's algorithm, then 

it satisfies the following recurrence relation: 
 

T(n) = 7T(n/2) + O(n2) 
                                  

 

It's important to note that the hidden constant in the O(n2) 

term is larger than the corresponding constant for the 

standard divide and conquer algorithm for this problem. 

However, for large matrices this algorithm yields an 

improvement over the standard one with respect to time. 


