
Dijkstra's Algorithm 

 
This algorithm finds the shortest path from a source vertex to 

all other vertices in a weighted directed graph without negative 

edge weights. 

 

Here is the algorithm for a graph G with vertices V = {v1, ... vn} 

and edge weights wij for an edge connecting vertex vi with 

vertex vj. Let the source be v1. 

 

Initialize a set S = .  This set will keep track of all vertices 

that we have already computed the shortest distance to from 

the source. 

 

Initialize an array D of estimates of shortest distances. D[1] = 

0, while D[i] = , for all other i. (This says that our estimate 

from v1 to v1 is 0, and all of our other estimates from v1 are 

infinity.) 

 

While S !=  V do the following: 

  1) Find the vertex (not is S) that corresponds to the 

      minimal estimate of shortest distances in array D. 

 2) Add this vertex, vi into S. 

 3) Recompute all estimates based on edges emanating  

       from v. In particular, for each edge from v, compute 

      D[i]+wij. If this quantity is less than D[j], then set 

      D[j] = D[i]+wij.  

 

 

 

 

 

 

 



Essentially, what the algorithm is doing is this: 

 

Imagine that you want to figure out the shortest route from the 

source to all other vertices. Since there are no negative edge 

weights, we know that the shortest edge from the source to 

another vertex must be a shortest path. (Any other path to the 

same vertex must go through another, but that edge would be 

more costly than the original edge based on how it was chosen.) 

 

Now, for each iteration, we try to see if going through that new 

vertex can improve our distance estimates. We know that all 

shortest paths contain subpaths that are also shortest paths. 

(Try to convince yourself of this.) Thus, if a path is to be a 

shortest path, it must build off another shortest path. That's 

essentially what we are doing through each iteration, is 

building another shortest path. When we add in a vertex, we 

know the cost of the path from the source to that vertex. 

Adding that to an edge from that vertex to another, we get a 

new estimate for the weight of a path from the source to the 

new vertex.   

 

This algorithm is greedy because we assume we have a shortest 

distance to a vertex before we ever examine all the edges that 

even lead into that vertex. In general, this works because we 

assume no negative edge weights. The formal proof is a bit 

drawn out, but the intuition behind it is as follows: If the shortest 

edge from the source to any vertex is weight w, then any other 

path to that vertex must go somewhere else, incurring a cost 

greater than w. But, from that point, there's no way to get a path 

from that point with a smaller cost, because any edges added to 

the path must be non-negative. 

 

By the end, we will have determined all the shortest paths, 

since we have added a new vertex into our set for each 

iteration.



This algorithm is easiest to follow in a tabular format. 

 

The adjacency matrix of an example graph is included below. 

Let a be the source vertex. 

 

a b c d e 

a 0 10  inf inf 3 

b inf 0 8 2 inf 

c 2 3 0 4 inf 

d 5  inf 4 0 inf 

e inf 12 16 13 0 

 

Here is the algorithm: 

 

Estimates  b c d e 

Add to Set 

a     10  inf inf 3 

e     10 19 16 3 

b     10 18 12 3 

d     10 16 12 3 

 

We changed the estimates to c and d to 19 and 16 respectively 

since these were improvements on prior estimates, using the 

edges from e to c and e to d. But, we did NOT change the 10 

because 3+12, (the edge length from e to b) gives us a path 

length of 15, which is more than the current estimate of 10. 

Using edges bc and bd, we improve the estimates to both c and 

d again. Finally using edge dc we improve the estimate to c. 

 

 

 

 

 

 

 



Now, we will prove why the algorithm works. We will use 

proof by contradiction. After each iteration of the algorithm, 

we "declare" that we have found one more shortest path. We 

will assume that one of these that we have found is NOT a 

shortest path.  

 

Let t be the first vertex that gets incorrectly placed in the set S. 

This means that there is a shorter path to t than the estimate 

produced when t is added into S. Since we have considered all 

edges from the set S into vertex t, it follows that if a shorter 

path exists, its last edge must emanate from a vertex outside of 

S to t. But, all the estimates to the edges outside of S are 

greater than the estimate to t. None of these will be improved 

by any edge emanating from a vertex in S (except t), since these 

have already been tried. Thus, it's impossible for ANY of these 

estimates to ever become better than the estimate to t, since 

there are no negative edge weights. With that in mind, since 

each edge leading to t is non-negative, going through any 

vertex not in S to t would not decrease the estimate of its 

distance. Thus, we have contradicted the fact that a shorter 

path to t could be found. Thus, when the algorithm terminates 

with all vertices in the set S, all estimates are correct. 

 

Try an example your self on the graph with the following 

adjacency matrix using a as the source. 

 

 

a b c d e 

a 0 3  4 inf inf 

b inf 0 inf 6 8 

c inf 2 0 1 5 

d inf  inf inf 0 2 

e inf inf inf inf 0 



Path Reconstruction in Dijkstra's Algorithm 

 
Given the history of the values in the distance estimate array, 

we can trace the shortest path. In the example below, consider 

determining the shortest distance from a to c: 

 

Estimates  b c d e 

Add to Set 

a     10  inf inf 3 

e     10 19 16 3 

b     10 18 12 3 

d     10 16 12 3 

 

When we updated the estimate to c to be 16, we added vertex d. 

This means that the last edge of the path was d -> c. Now, go to 

the column for d. We see that d's distance was updated when 

we added b to the set S. Thus, the last edge of the shortest path 

from a to d is the edge d->b. Finally, we go to the column for b 

and find that the shortest distance to b is obtained by the edge 

a->b. Thus, putting everything together, we have the path a-

>b->d->c. 

 

Consider if we had filled out the chart as follows: 

 

Estimates  b  c  d  e 

Add to Set 

a     10/a   inf  inf  3/a 

e     10/a  19/e  16/e  3/a 

b     10/a  18/b  12/b  3/a 

d     10/a  16/d  12/b  3/a 

 

When we update a estimate, we ALSO update which vertex got 

us there. When we finish, we just need the information on the 

last row to reconstruct any shortest path from a. 



For example, if we wanted to reconstruct the shortest path 

from a  c, we go to the entry in the array for vertex c and see 

that the shortest path from a to c visited d right before getting 

to c, so now we know that the shortest path is: 

 

a .. d  c 

 

Next, we go to the array entry for vertex d and see that its 

predecessor was vertex b, so now our path is: 

 

a .. b  d  c 

 

Finally, we go to the array entry for vertex b and see that its 

predecessor was vertex a, so the path above is complete: 

 

a  b  d  c 

 

A good exercise would be to take the posted Dijkstra's code 

and edit it to perform path reconstruction. 

 


