Amortized Algorithm Analysis

There are some operations that have “costly” running times, but the worst possible average running time of the same operation over a sequence of several operations is much less “costly.” In these situations, we say that the amortized worst-case running time of the operation is the latter value. This claim is a stronger claim, or more accurate analysis of an operation than just finding it’s worst case running time for a single operation.

Consider the clearable table data structure, that supports two operations:

1) Add an entry.

2) Clear the entire table.

An add operation always takes O(1) time. A clear operation takes O(k) time where there are k items currently in the table. Starting with an empty table, when we run n operations, it is possible that a single clear operation is ((n), since the table could have up to n-1 items in it. Now, let’s do the amortized analysis:

Our operations can be categorized as a sequence of several adds followed by a clear repeated several times. If there are k clear operations out of n total operations, then there are n-k add operations. BUT, the maximum running time of all the clears is the total number of elements that get cleared, which is n-k. Thus, the maximum running time of n operations is 2(n-k) (2n. Thus the average time for an operation in a clearable table is less than 2n/n = 2. Thus, even though the worst-case time for a clear operation is O(n), the amortized worst-case time of add and clear operations over n operations is O(1).

Amortization Techniques

There are a couple different techniques that aid in amortized analysis: the accounting method and the potential function. Even though the names of methods are different, they are quite similar. In each you track simple operations with money or a “potential” function. In the accounting method you start with a certain amount of money and each simple operation costs one dollar. You must show that you don’t spend all of your money after performing n consecutive operations. Regardless of which analogy you use, the key in amortized analysis is to determine the worst-case running time of a certain number of consecutive operations.

As an exercise for you guys, compute the amortized worst case running time of n consecutive variable-popping stack operations.

A variable popping stack has two operations:

1) push(x), pushes the element x onto the stack.

2) pop(k), pops the top k elements off the stack.

The running time of the pop(k) operation is O(k), since each element must technically be popped off individually.

Amortization: Extendable Array Implementation

Java provides a dynamic Vector class. In essence, a vector is an array that automatically grows when necessary. Although this seems like a simple operation, in reality, a whole new array has to be allocated anytime the size of an array is “changed.” Thus, adding an element to an array that forces the array to extend itself may be a very costly (O(n), where n is the current number of elements in the array) operation.

Now the question is, can we extend an array in such a manner that the amortized worst-case running time of a set of array operations is O(1). The answer, as you might imagine is yes. Here is how: every time the array needs to be resized, double the size of the array.

Given an array with n items in it, the worst case is that the array is full. If this is so, consider any n consecutive operations of the array. No matter what, we will at most double the size of the array once. When this occurs, we’ll have to allocate the new space and copy over each element one by one. (Hopefully a full explanation of this was given in CS2.) Regardless, the total number of steps necessary for an add operation when the array is resized is approximately n steps. For each of the other n-1 adds, we only use one simple step. Adding, we get n+(n-1) simple steps which is essentially 2n meaning that the amortized worst case algorithm for using an extendable array is O(2n/n) or O(1).

Here is one way to justify this: Every time you do an add, imagine paying $2. When it's a simple add, $1 goes into a bank. Whenever you have to expand the array, you'll have enough money in the bank to do so.

Amortized Analysis of a Binary Counter

Consider a binary counter of n-bits, that counts from 0 to 2n-1.

For example, here is the counter for n=4:

0000

0001, 1 bit flipped

0010, 2 bits flipped

0011, 1 bit flipped

0100, 3 bits flipped

0101, 1 bit flipped

0110, 2 bits flipped

0111, 1 bit flipped

1000, 4 bits flipped

1001, 1 bit flipped

1010, 2 bits flipped

1011, 1 bit flipped

1100, 3 bits flipped

1101, 1 bit flipped

1110, 2 bits flipped

1111, 1 bit flipped

We might be interested in the total number of bit flips this counter performs. The worst case of a single operation is flipping all n bits. This occurs when we flip from 01111...1 to 10000...0. But, over the course of the whole counter, we can show that the total number of operations averages just under 2 bit flips. From the example above, we see that we are making 2n-1 counter changes. Of these, 2n-1 contain 1 flip (this is every other), then 2n-2 contain 2 flips (this is every fourth, etc. In fact, we can construct a chart like so:

	Number of bit flips
	Number of times this occurs

	1
	2n-1

	2
	2n-2

	3
	2n-3

	...
	...

	k
	2n-k

	...
	...

	n
	1

To count the total number of bit flips, we need to simply multiply the numbers on each column of this table then add all of those up. Let S = this sum.

S = 1x2n-1 + 2x2n-2 + 3x2n-3 + ... + + nx20
Now, multiply this equation by 2 to yield:

2S = 1x2n + 2x2n-1 + 3x2n-2 + ... + + nx21
Put this equation right above the other and subtract the other one from it like so:

2S = 1x2n + 2x2n-1 + 3x2n-2 + ... + nx21
- S = 1x2n-1 + 2x2n-2 + 3x2n-3 + ... +(n-1)x21 + nx20
__

S = 1x2n +1x2n-1 + 1x2n-2 + 1x2n-3 + ... +1x21 - n

S = 2n+1 - 2 - n, utilizing the formula for a finite geometric sequence.

Thus, to get the average number of bit flips, take S and divide by the total number of operations, 2n - 1. We can very easily show that the result of this division is just
[image: image1.wmf]1

2

2

-

-

n

n

, a value that approaches 2 from below as n gets large.

_1187010941.unknown

