
Creating Algorithms 

 
Now that we've discussed analyzing algorithms, let's briefly 

discuss designing efficient algorithms. The latter is much more 

difficult to do than the former because it requires more 

creativity. (Coming up with a completely new algorithm to 

solve a problem faster than another algorithm is more difficult 

than counting the number of simple steps in an algorithm that 

someone else has already created for you.) 

 

In this lecture we will analyze two separate problems. For each 

problem we will look and three solutions, each of which is an 

improvement on the previous one. In this manner, we will see 

how it might be possible to first find a solution to a problem, 

and then later "fine-tune" it to be more efficient with respect 

to run-time. 

 



Sorted List Matching Problem 

 
Given two sorted lists of names, output the names common to 

both lists. 

 

Perhaps the standard way to attack this problem is the 

following: 

 

For each name on list #1, do the following: 

 a) Search for the current name in list #2. 

 b) If the name is found, output it. 

 

If a list is unsorted, steps a and b may take O(n) time. Can you 

tell me why? 

 

BUT, we know that both lists are already sorted. Thus we can 

use a binary search in step a. From CS1, we learned that this 

takes O(log n) time, where n is the total number of names in 

the list. For the moment, if we assume that both lists are of 

equal size, then we can safely say that the size of list #2 is about 

½ the total input size, so technically, our search would take 

O(log n/2) time, where n is the TOTAL SIZE of our input to 

the problem. Using our log rules however, we find that log2 n = 

(log2 n/2) + 1. Thus, it’s fairly safe to assume for large n that 

our running time is simply O(log2 n). 

 

Now, that is simply the running time for 1 loop iteration. But 

how many loop iterations are there? (Assume that there are n/2 

names on each list, again, where n is the TOTAL SIZE of the 

input.) Under our assumption, there will be n/2 loop iterations, 

so our total running time would be O(n log2 n). Why did I not 

divide the expression in the Big-O by 2? 

 



A natural question becomes:  Can we do better?  The answer is 

yes. What is one piece of information we have that our first 

algorithm does NOT assume? 

 

That list #1 is sorted. You’ll notice that our previous algorithm 

will work regardless of the order of the names in list #1. But, 

we KNOW that this list is sorted also. Can we exploit this fact 

so that we don’t have to do a full binary search for each name?  

 

Consider how you’d probably do this task in real life... 

 

List #1   List #2 

Adams   Boston 

Bell    Davis 

Davis   Duncan 

Harding   Francis 

Jenkins   Gamble 

Lincoln   Harding 

Simpson   Mason 

Zoeller   Simpson 

 

You’d read that Adams and Boston are the first names on the 

list. Immediately you’d know that Adams wasn’t a match, and 

neither would any name on the list #1 alphabetically before 

Boston. So, you’d read Bell and go on to Davis. At this point 

you’d deduce that Boston wasn’t on the list either, so you’d 

read the next name on list #2 – voila!!! A match! You’d output 

this name and simply repeat the same idea. In particular, what 

we see here is that you ONLY go forward on your list of 

names. And for every “step” so to speak, you will read a new 

name off one of the two lists. Here is a more formalized version 

of the algorithm: 

 



1) Start two “markers”, one for each list, at the beginning of 

both lists. 

2) Repeat the following steps until one marker has reached the 

end of its list. 

    a) Compare the two names that the markers are pointing at. 

    b) If they are equal, output the name and advance BOTH 

markers one spot. 

         If they are NOT equal, simply advance the marker 

pointing to the name that comes earlier alphabetically 

one spot. 

 

Algorithm Run-Time Analysis 

For each loop iteration, we advance at least one marker. 

The maximum number of iterations then, would be the total 

number of names on both lists, which is n, using our previous 

interpretation. 

 

For each iteration, we are doing a constant amount of work. 

(Essentially a comparison, and/or outputting a name.) 

 

Thus, our algorithm runs in O(n) time – an improvement over 

our previous algorithm. 

 

A final question one must ask is, can we solve this question in 

even less time? If yes, what is such an algorithm, if no, how can 

we prove it? 

 

Our proof goes along these lines: In order to have an accurate 

list, we must read every name on one of the two lists. If we skip 

names on BOTH lists, we can NOT deduce whether we would 

have matches between those names or not. In order to simply 

“read” all the names on one list, we would take O(n/2) time. 

But, in order notation, this is still O(n), the running time of our 

second algorithm. Thus, we know we can not do better in terms 

of time, (within a constant factor), of our second algorithm. 



Sample Algorithm Development and Analysis 

 
The Prefix Average problem is as follows: 

 

Given an array of values, X[0..n-1], compute a second array 

with A with intermediate averages such that A[i] is the average 

of X[0], X[1], … X[i]. 

 

The straightforward algorithm is as follows: 

 

For each array element A[i]: 

 Compute this value by adding X[0], X[1], .., X[i] in a loop, 

     then dividing by i. 

 

In code we have: 

 

public static int[] prefixave(int [] X) { 

     int [] A = new int[X.length]; 

 

     // Loop to successively compute each average. 

 for (int i=0; i<A.length; i++) { 

         A[i] = 0; 

      for (int j=0; j<=i; j++) // Sum X[0] to X[i]. 

  A[i] += X[j]; 

      A[i] = A[i]/(i+1); // Compute average from sum. 

     } 

     return A; 

} 

 

 Hopefully it is evident that that this algorithm will work. The 

question is, how long will it take? Notice that the statements 

A[i]=0 and A[i]=A[i]/(i+1) both execute exactly n times.  

 

 



The only question is how many times does A[i] += X[j] 

execute? When i=0, it executes once, with i=1, it executes twice, 

…, finally when i=n-1, (where n is the length of the array), it 

executes n times. Thus, the number of times this statement is 

executed is 1+2+3+…+n = n(n+1)/2 = O(n2). 

 

So, using all of this, the total number of simple statements is 

O(n) + O(n2). (The O(n) is for the 2 other loop statements and 

the for the outer for loop increment statement and 

comparison.) Using the Big-Oh rules, we find that this 

algorithm is O(n2). 

 

But, it seems as if we are doing too much work here. Can we 

streamline this algorithm? Consider computing just all of the 

prefix sums first, instead of the averages. We can compute each 

running sum in a accumulator variable. Then we can simply 

assign each array element A by dividing the running sum by 

the number of terms added. From CS1, the efficient way to run 

an accumulator variable is to initialize it to 0 and then simply 

add subsequent terms from the array X into the accumulator 

variable: 

 

public static int[] prefixave2(int [] X) { 

     int [] A = new int[X.length]; 

     int s = 0; 

     // Loop to successively compute each average. 

 for (int i=0; i<ave.length; i++) { 

         s += X[i]; 

     A[i] = s/(i+1); // Compute average from sum. 

     } 

     return A; 

}  

 

Why is this an O(n) algorithm? 

 



Maximal Contiguous Subsequent Sum Problem 

 

Maximum Contiguous Subsequence Sum:  given (a possibly 

negative) integers A1, A2, …, AN, find (and identify the 

sequence corresponding to) the maximum value of  




j

ik

kA           

 

For the degenerate case when all of the integers are negative, 

the maximum contiguous subsequence sum is zero. 

 

Examples:   

 

If input is: {-2, 11, -4, 13, -5, 2}.  Then the output is: 20. 

 

If the input is {1, -3, 4, -2, -1, 6}.  Then the output is 7. 

 

In the degenerative case, since the sum is defined as zero, the 

subsequence is an empty string.  An empty subsequence is 

contiguous and clearly, 0 > any negative number, so zero is the 

maximum contiguous subseqeunce sum. 

 



The O(N3) Algorithm (brute force method) 

 

public static int MCSS(int [] a) { 

 

     int max = 0, sum = 0, start = 0, end = 0; 

   

     // Cycle through all possible values of start and end indexes 

     // for the sum. 

     for (i = 0; i < a.length; i++) { 

          for (j = i; j < a.length; j++) {  

               sum = 0; 

 

               // Find sum A[i] to A[j]. 

               for (k = i; k <= j; k++)  

                    sum += a[k]; 

               if (sum > max) { 

                   max = sum; 

                   start = i; // Although method doesn't return these 

                   end = j;  // they can be computed. 

               } 

          }       

     } 

     return max; 

} 

 

General Observation Analysis 

 

Look at the three loops: the i loop executes SIZE (or N) times.  

The j loop executes SIZE-1 (or N-1) times.  The k loop executes 

SIZE-1 times in the worst case (when i = 0).  This gives a rough 

estimate that the algorithm is O(N3). 

 

 
 



Precise Analysis Using Big-Oh Notation 
 

In all cases the number of times that, sum += a[k], is executed 

is equal to the number of ordered triplets (i, j, k) where 1  i  

k  j  N2 (since i runs over the whole index, j runs from i to 

the end, and k runs from i to j).  Therefore, since  i, j, k, can 

each only assume 1 of n values, we know that the number of 

triplets must be less than n(n)(n) = N3 but i  k  j restricts this 

even further.  By combinatorics it can be proven that the 

number of ordered triplets is n(n+1)(n+2)/6.  Therefore, the 

algorithm is O(N3). 

 

 

A Simple Big-Oh Rule 
 

A Big-Oh estimate of the running time is determined by multiplying the size 

of all the nested loops together. BUT, THERE ARE EXCEPTIONS TO 

THIS RULE!!! 



The O(N2) Algorithm  

 
Algorithm 

public static int MCSS(int [] a) { 

     int max = 0, sum = 0, start = 0, end = 0; 

     // Try all possible values of start and end indexes for the sum. 

     for (i = 0; i < a.length; i++) { 

          sum = 0; 

          for (j = i; j < a.length; j++) { 

               sum += a[j]; // No need to re-add all values. 

               if (sum > max) { 

                   max = sum; 

                   start = i; // Although method doesn't return these 

                   end = j;  // they can be computed. 

               } 

          }       

     } 

     return max; 

} 

 

Discussion of the technique and analysis 

We would like to improve this algorithm to run in time better 

than O(N3).  To do this we need to remove a loop!  The 

question then becomes, “how do we remove one of the loops?”  

In general, by looking for uncessary calculations, in this 

specific case, uncessary calculations are performed in the 

innerloop. The sum for the subsequence extending from i to j – 

1 was just calculated – so calculating the sum of the sequence 

from i to j shouldn’t take long because all that is required is 

that you add one more term to the previous sum (i.e., add Aj ).  

However, the cubic algorithm throws away all of this previous 

information and must recompute the entire sequence! 

Mathematically, we are utilizing: j
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The O(N) Algorithm (A linear algorithm) 

 

Discussion of the technique and analysis 

 

To further streamline this algorithm from a quadratic one to a 

linear one will require the removal of yet another loop.  

Getting rid of another loop will not be as simple as was the first 

loop removal.  The problem with the quadratic algorithm is 

that it is still an exhaustive search, we’ve simply reduced the 

cost of computing  the last subsequence down to a constant 

time (O(1)) compared with the linear time (O(N)) for this 

calculation in the cubic algorithm.  The only way to obtain a 

subquadratic bound for this algorithm is to narrow the search 

space by eliminating from consideration a large number of 

subsequences that cannot possibly affect the maximum value. 

 

How to eliminate subsequences from consideration 

 

i                                    j   j+1                              q 

A             < 0 B           Sj+1, q 

C   < Sj+1, q 

 

If A < 0 then C < B  

 

If 0


j

ik

kA , and if q > j, then Ai…Aq is not the MCSS! 

 

Basically if you take the sum from Ai to Aq and get rid of the 

first terms from  Ai to Aj your sum increases!!! Thus, in this 

situation the sum from Aj+1 to Aq must be greater than the sum 

from Ai to Aq.  So, no subsequence that starts from index i and 

ends after index j has to be considered. 



So – if we test for sum < 0 and it is – then we can break out of 

the inner loop.  However, this is not sufficient for reducing the 

running time below quadratic! 

 

Now, using the fact above and one more observation, we can 

create a O(n) algorithm to solve the problem. 

 

If we start computing sums 


i

ik

kA
, 





1i

ik

kA , etc. until we find 

the first value j such that 0


j

ik

kA , then immediately we 

know that either 

 

1) The MCSS is contained entirely in between Ai to Aj-1  OR 

2) The MCSS starts before Ai or after Aj. 

 

From this, we can also deduce that unless there exists a 

subsequence that starts at the beginning that is negative, the 

MCSS MUST start at the beginning. If it does not start at the 

beginning, then it MUST start after the point at which the sum 

from the beginning to a certain point is negative. 

 

So, using this how can we come up with an algorithm? 

 

1) We can compute intermediate sums starting at i=0. 

2) When a new value is added, adjust the MCSS accordingly. 

3) If the running sum ever drops below 0, we KNOW that if 

there is a new MCSS than what has already been calculated, it 

will start AFTER index j, where j is the first time the sum 

dropped below zero. 

4) So now, just start the new running sum from j+1. 

 

 



Algorithm 
 

public static int MCSS(int [] a) { 

 

     int max = 0, sum = 0, start = 0, end = 0, i=0; 

   

     // Cycle through all possible end indexes. 

     for (j = 0; j < a.length; j++) { 

         

          sum += a[j]; // No need to re-add all values. 

          if (sum > max) { 

              max = sum; 

              start = i; // Although method doesn't return these 

              end = j;  // they can be computed. 

          } 

          else if (sum < 0) { 

               i = j+1; // Only possible MCSSs start with an index >j. 

               sum = 0; // Reset running sum. 

          }       

     } 

     return max; 

} 
 

 

 

Discussion of running time analysis 

 

The j loop runs N times and the body of the loop contains only 

constant time operations, therefore the algorithm is O(N). 

 

 



MCSS Linear Algorithm Clarification 

 

Whenever a subsequence is encountered which has a negative 

sum – the next subsequence to examine can begin after the end 

of the subsequence which produced the negative sum.  In other 

words, there is no starting point in that subsequence which will 

generate a positive sum and thus, they can all be ignored. 

 

To illustrate this, consider the example with the values 

 

5, 7, -3, 1, -11, 8, 12 

 

You'll notice that the sums 

 

5, 5+7, 5+7+(-3) and 5+7+(-3)+1       are positive, but 

 

5+7+(-3)+1+(-11) is negative. 

 

It must be the case that all subsequences that start with a value 

in between the 5 and -11 and end with the -11 have a negative 

sum. Consider the following sums: 

 

7+(-3)+1+(-11)  (-3)+1+(-11)  1+(-11)  (-11) 

 

Notice that if any of these were positive, then the subsequence 

starting at 5 and ending at -11 would have to be also. (Because 

all we have done is stripped the initial positive subsequence 

starting at 5 in the subsequences above.) Since ALL of these 

are negative, it follows that NOW MCSS could start at any 

value in between 5 and -11 that has not been computed. 

 

Thus, it is perfectly fine, at this stage, to only consider 

sequences starting at 8 to compare to the previous maximum 

sequence of 5, 7, -3, and 1. 


