
Creating Algorithms

Now that we've discussed analyzing algorithms, let's briefly

discuss designing efficient algorithms. The latter is much more

difficult to do than the former because it requires more

creativity. (Coming up with a completely new algorithm to

solve a problem faster than another algorithm is more difficult

than counting the number of simple steps in an algorithm that

someone else has already created for you.)

In this lecture we will analyze two separate problems. For each

problem we will look and three solutions, each of which is an

improvement on the previous one. In this manner, we will see

how it might be possible to first find a solution to a problem,

and then later "fine-tune" it to be more efficient with respect

to run-time.

Sorted List Matching Problem

Given two sorted lists of names, output the names common to

both lists.

Perhaps the standard way to attack this problem is the

following:

For each name on list #1, do the following:

 a) Search for the current name in list #2.

 b) If the name is found, output it.

If a list is unsorted, steps a and b may take O(n) time. Can you

tell me why?

BUT, we know that both lists are already sorted. Thus we can

use a binary search in step a. From CS1, we learned that this

takes O(log n) time, where n is the total number of names in

the list. For the moment, if we assume that both lists are of

equal size, then we can safely say that the size of list #2 is about

½ the total input size, so technically, our search would take

O(log n/2) time, where n is the TOTAL SIZE of our input to

the problem. Using our log rules however, we find that log2 n =

(log2 n/2) + 1. Thus, it’s fairly safe to assume for large n that

our running time is simply O(log2 n).

Now, that is simply the running time for 1 loop iteration. But

how many loop iterations are there? (Assume that there are n/2

names on each list, again, where n is the TOTAL SIZE of the

input.) Under our assumption, there will be n/2 loop iterations,

so our total running time would be O(n log2 n). Why did I not

divide the expression in the Big-O by 2?

A natural question becomes: Can we do better? The answer is

yes. What is one piece of information we have that our first

algorithm does NOT assume?

That list #1 is sorted. You’ll notice that our previous algorithm

will work regardless of the order of the names in list #1. But,

we KNOW that this list is sorted also. Can we exploit this fact

so that we don’t have to do a full binary search for each name?

Consider how you’d probably do this task in real life...

List #1 List #2

Adams Boston

Bell Davis

Davis Duncan

Harding Francis

Jenkins Gamble

Lincoln Harding

Simpson Mason

Zoeller Simpson

You’d read that Adams and Boston are the first names on the

list. Immediately you’d know that Adams wasn’t a match, and

neither would any name on the list #1 alphabetically before

Boston. So, you’d read Bell and go on to Davis. At this point

you’d deduce that Boston wasn’t on the list either, so you’d

read the next name on list #2 – voila!!! A match! You’d output

this name and simply repeat the same idea. In particular, what

we see here is that you ONLY go forward on your list of

names. And for every “step” so to speak, you will read a new

name off one of the two lists. Here is a more formalized version

of the algorithm:

1) Start two “markers”, one for each list, at the beginning of

both lists.

2) Repeat the following steps until one marker has reached the

end of its list.

 a) Compare the two names that the markers are pointing at.

 b) If they are equal, output the name and advance BOTH

markers one spot.

 If they are NOT equal, simply advance the marker

pointing to the name that comes earlier alphabetically

one spot.

Algorithm Run-Time Analysis

For each loop iteration, we advance at least one marker.

The maximum number of iterations then, would be the total

number of names on both lists, which is n, using our previous

interpretation.

For each iteration, we are doing a constant amount of work.

(Essentially a comparison, and/or outputting a name.)

Thus, our algorithm runs in O(n) time – an improvement over

our previous algorithm.

A final question one must ask is, can we solve this question in

even less time? If yes, what is such an algorithm, if no, how can

we prove it?

Our proof goes along these lines: In order to have an accurate

list, we must read every name on one of the two lists. If we skip

names on BOTH lists, we can NOT deduce whether we would

have matches between those names or not. In order to simply

“read” all the names on one list, we would take O(n/2) time.

But, in order notation, this is still O(n), the running time of our

second algorithm. Thus, we know we can not do better in terms

of time, (within a constant factor), of our second algorithm.

Sample Algorithm Development and Analysis

The Prefix Average problem is as follows:

Given an array of values, X[0..n-1], compute a second array

with A with intermediate averages such that A[i] is the average

of X[0], X[1], … X[i].

The straightforward algorithm is as follows:

For each array element A[i]:

 Compute this value by adding X[0], X[1], .., X[i] in a loop,

 then dividing by i.

In code we have:

public static int[] prefixave(int [] X) {

 int [] A = new int[X.length];

 // Loop to successively compute each average.

 for (int i=0; i<A.length; i++) {

 A[i] = 0;

 for (int j=0; j<=i; j++) // Sum X[0] to X[i].

 A[i] += X[j];

 A[i] = A[i]/(i+1); // Compute average from sum.

 }

 return A;

}

 Hopefully it is evident that that this algorithm will work. The

question is, how long will it take? Notice that the statements

A[i]=0 and A[i]=A[i]/(i+1) both execute exactly n times.

The only question is how many times does A[i] += X[j]

execute? When i=0, it executes once, with i=1, it executes twice,

…, finally when i=n-1, (where n is the length of the array), it

executes n times. Thus, the number of times this statement is

executed is 1+2+3+…+n = n(n+1)/2 = O(n2).

So, using all of this, the total number of simple statements is

O(n) + O(n2). (The O(n) is for the 2 other loop statements and

the for the outer for loop increment statement and

comparison.) Using the Big-Oh rules, we find that this

algorithm is O(n2).

But, it seems as if we are doing too much work here. Can we

streamline this algorithm? Consider computing just all of the

prefix sums first, instead of the averages. We can compute each

running sum in a accumulator variable. Then we can simply

assign each array element A by dividing the running sum by

the number of terms added. From CS1, the efficient way to run

an accumulator variable is to initialize it to 0 and then simply

add subsequent terms from the array X into the accumulator

variable:

public static int[] prefixave2(int [] X) {

 int [] A = new int[X.length];

 int s = 0;

 // Loop to successively compute each average.

 for (int i=0; i<ave.length; i++) {

 s += X[i];

 A[i] = s/(i+1); // Compute average from sum.

 }

 return A;

}

Why is this an O(n) algorithm?

Maximal Contiguous Subsequent Sum Problem

Maximum Contiguous Subsequence Sum: given (a possibly

negative) integers A1, A2, …, AN, find (and identify the

sequence corresponding to) the maximum value of

j

ik

kA

For the degenerate case when all of the integers are negative,

the maximum contiguous subsequence sum is zero.

Examples:

If input is: {-2, 11, -4, 13, -5, 2}. Then the output is: 20.

If the input is {1, -3, 4, -2, -1, 6}. Then the output is 7.

In the degenerative case, since the sum is defined as zero, the

subsequence is an empty string. An empty subsequence is

contiguous and clearly, 0 > any negative number, so zero is the

maximum contiguous subseqeunce sum.

The O(N3) Algorithm (brute force method)

public static int MCSS(int [] a) {

 int max = 0, sum = 0, start = 0, end = 0;

 // Cycle through all possible values of start and end indexes

 // for the sum.

 for (i = 0; i < a.length; i++) {

 for (j = i; j < a.length; j++) {

 sum = 0;

 // Find sum A[i] to A[j].

 for (k = i; k <= j; k++)

 sum += a[k];

 if (sum > max) {

 max = sum;

 start = i; // Although method doesn't return these

 end = j; // they can be computed.

 }

 }

 }

 return max;

}

General Observation Analysis

Look at the three loops: the i loop executes SIZE (or N) times.

The j loop executes SIZE-1 (or N-1) times. The k loop executes

SIZE-1 times in the worst case (when i = 0). This gives a rough

estimate that the algorithm is O(N3).

Precise Analysis Using Big-Oh Notation

In all cases the number of times that, sum += a[k], is executed

is equal to the number of ordered triplets (i, j, k) where 1 i

k j N2 (since i runs over the whole index, j runs from i to

the end, and k runs from i to j). Therefore, since i, j, k, can

each only assume 1 of n values, we know that the number of

triplets must be less than n(n)(n) = N3 but i k j restricts this

even further. By combinatorics it can be proven that the

number of ordered triplets is n(n+1)(n+2)/6. Therefore, the

algorithm is O(N3).

A Simple Big-Oh Rule

A Big-Oh estimate of the running time is determined by multiplying the size

of all the nested loops together. BUT, THERE ARE EXCEPTIONS TO

THIS RULE!!!

The O(N2) Algorithm

Algorithm

public static int MCSS(int [] a) {

 int max = 0, sum = 0, start = 0, end = 0;

 // Try all possible values of start and end indexes for the sum.

 for (i = 0; i < a.length; i++) {

 sum = 0;

 for (j = i; j < a.length; j++) {

 sum += a[j]; // No need to re-add all values.

 if (sum > max) {

 max = sum;

 start = i; // Although method doesn't return these

 end = j; // they can be computed.

 }

 }

 }

 return max;

}

Discussion of the technique and analysis

We would like to improve this algorithm to run in time better

than O(N3). To do this we need to remove a loop! The

question then becomes, “how do we remove one of the loops?”

In general, by looking for uncessary calculations, in this

specific case, uncessary calculations are performed in the

innerloop. The sum for the subsequence extending from i to j –

1 was just calculated – so calculating the sum of the sequence

from i to j shouldn’t take long because all that is required is

that you add one more term to the previous sum (i.e., add Aj).

However, the cubic algorithm throws away all of this previous

information and must recompute the entire sequence!

Mathematically, we are utilizing: j

j

ik

k

j

ik

k AAA

)(
1

.

The O(N) Algorithm (A linear algorithm)

Discussion of the technique and analysis

To further streamline this algorithm from a quadratic one to a

linear one will require the removal of yet another loop.

Getting rid of another loop will not be as simple as was the first

loop removal. The problem with the quadratic algorithm is

that it is still an exhaustive search, we’ve simply reduced the

cost of computing the last subsequence down to a constant

time (O(1)) compared with the linear time (O(N)) for this

calculation in the cubic algorithm. The only way to obtain a

subquadratic bound for this algorithm is to narrow the search

space by eliminating from consideration a large number of

subsequences that cannot possibly affect the maximum value.

How to eliminate subsequences from consideration

i j j+1 q

A < 0 B Sj+1, q

C < Sj+1, q

If A < 0 then C < B

If 0

j

ik

kA , and if q > j, then Ai…Aq is not the MCSS!

Basically if you take the sum from Ai to Aq and get rid of the

first terms from Ai to Aj your sum increases!!! Thus, in this

situation the sum from Aj+1 to Aq must be greater than the sum

from Ai to Aq. So, no subsequence that starts from index i and

ends after index j has to be considered.

So – if we test for sum < 0 and it is – then we can break out of

the inner loop. However, this is not sufficient for reducing the

running time below quadratic!

Now, using the fact above and one more observation, we can

create a O(n) algorithm to solve the problem.

If we start computing sums

i

ik

kA
,

1i

ik

kA , etc. until we find

the first value j such that 0

j

ik

kA , then immediately we

know that either

1) The MCSS is contained entirely in between Ai to Aj-1 OR

2) The MCSS starts before Ai or after Aj.

From this, we can also deduce that unless there exists a

subsequence that starts at the beginning that is negative, the

MCSS MUST start at the beginning. If it does not start at the

beginning, then it MUST start after the point at which the sum

from the beginning to a certain point is negative.

So, using this how can we come up with an algorithm?

1) We can compute intermediate sums starting at i=0.

2) When a new value is added, adjust the MCSS accordingly.

3) If the running sum ever drops below 0, we KNOW that if

there is a new MCSS than what has already been calculated, it

will start AFTER index j, where j is the first time the sum

dropped below zero.

4) So now, just start the new running sum from j+1.

Algorithm

public static int MCSS(int [] a) {

 int max = 0, sum = 0, start = 0, end = 0, i=0;

 // Cycle through all possible end indexes.

 for (j = 0; j < a.length; j++) {

 sum += a[j]; // No need to re-add all values.

 if (sum > max) {

 max = sum;

 start = i; // Although method doesn't return these

 end = j; // they can be computed.

 }

 else if (sum < 0) {

 i = j+1; // Only possible MCSSs start with an index >j.

 sum = 0; // Reset running sum.

 }

 }

 return max;

}

Discussion of running time analysis

The j loop runs N times and the body of the loop contains only

constant time operations, therefore the algorithm is O(N).

MCSS Linear Algorithm Clarification

Whenever a subsequence is encountered which has a negative

sum – the next subsequence to examine can begin after the end

of the subsequence which produced the negative sum. In other

words, there is no starting point in that subsequence which will

generate a positive sum and thus, they can all be ignored.

To illustrate this, consider the example with the values

5, 7, -3, 1, -11, 8, 12

You'll notice that the sums

5, 5+7, 5+7+(-3) and 5+7+(-3)+1 are positive, but

5+7+(-3)+1+(-11) is negative.

It must be the case that all subsequences that start with a value

in between the 5 and -11 and end with the -11 have a negative

sum. Consider the following sums:

7+(-3)+1+(-11) (-3)+1+(-11) 1+(-11) (-11)

Notice that if any of these were positive, then the subsequence

starting at 5 and ending at -11 would have to be also. (Because

all we have done is stripped the initial positive subsequence

starting at 5 in the subsequences above.) Since ALL of these

are negative, it follows that NOW MCSS could start at any

value in between 5 and -11 that has not been computed.

Thus, it is perfectly fine, at this stage, to only consider

sequences starting at 8 to compare to the previous maximum

sequence of 5, 7, -3, and 1.

