
Order Notation - Big Oh 

 

Since we want to simply count the number of simple statements 

and algorithm runs in terms of Big-Oh notation, we need to 

learn the formal definition of Big-Oh, Big-Omega, and Big-

Theta, so that we properly use these technical terms. 

 

Definition of O(g(n)) : 

 

f(n) = O(g(n)) iff for all n  n0 (n0 is a constant.) 

 

f(n)  cg(n) for some constant c. 

(Note: iff means "if and only if") 

 

Here is an example: 

 

Let f(n) = 2n+1 and g(n) = n. In this situation f(n) = O(g(n)). 

Here is how to prove it: 

 

Let c=3, and n0=2. then f(n) = 2n+1 and cg(n) = 3n. 

 

Thus, we need to show that (2n+1)  3n for all n  2. 

 

2n+1  2n + n, since n > 1. 

          = 3n. 

 

Thus, if we say some algorithm takes O(n) time to execute (in 

the worst case), we are really saying that no matter what input 

of size n the algorithm receives, it will always complete in cn 

steps, where c is some constant. We will usually use big-Oh 

notation when we are describing a worst-case running time. 

 

In general, a simple rule dealing with simple polynomial 

functions is the following: 



 

If f(n) is a polynomial of degree k, then f(n) = O(nk). 

 

Question : Is 2n+1 = O(n10)? Answer yes, try c=1, n0=2. 

 

Big-Oh(O) is an upper bound. It simply guarantees that a 

function is no larger than a constant times a function g(n), for 

O(g(n)). 

 

Here is a definition using a limit : 

f(n) = O(g(n))  

iff lim as n f(n)/g(n) = c, where c is a constant. 

 

 

Order Notation - Big Omega 

 

The opposite of big Oh, in some sense, is big Omega.  

 

Definition of : 

 

f(n) = (g(n)) iff for all n  n0 (n0 is a constant.) 

 

f(n)  cg(n) for some constant c. (Notice that the ONLY  

         difference here is the  

         inequality sign.) 

 

Here is a quick example: 

 

Let f(n) = n2 - 3 

g(n) = 10n. 

 

In this situation, we have f(n) = (g(n)).  We can prove this as 

follows: 

 



Let c = .1 and n0=3. 

 

Then we have 

f(n) = n2 - 3, cg(n) = n.  

 

Thus, we need to show that 

n2 - 3  n for all n  3. 

 

n2 - 3  n2 - n, since n  3. 

          = n(n-1) 

            n(2), since n3, n-12. 

            n. 

 

Here is the limit definition of : 

 

f(n) =  (g(n))  

iff lim as n f(n)/g(n) > 0. 

 

In essence,  establishes a lower bound for a function. f(n) has 

to grow at least as fast as g(n) to within a constant factor. With 

respect to an algorithm, when we say that an algorithm runs in 

(n) for example, this means that whenever you run an 

algorithm with an input of size n, the number of small 

instructions executed is AT LEAST cn, where c is some 

positive constant. 

 

Order Notation - Big Theta 

 

Definition of : 

 

f(n) = (g(n)) iff f(n) = O(g(n)) and f(n) = (g(n)). 

 



This simply means that g(n) is both an upper AND lower 

bound of f(n) within a constant factor. In essence, as n grows 

large, f(n) and g(n) are within a constant of each other. 

 

Here's the limit definition: 

 

f(n) =  (g(n))  

iff lim as n f(n)/g(n) = c, where c is a constant and c > 0. 

 

Thus, if we can show that the an algorithm runs in O(f(n)) time 

for any input of size n, and also show that an algorithm runs in 

(f(n)) time for any input of size n, we can conclude that both 

the WORST case running time and BEST case running time 

are proportional to f(n), (meaning that the number of small 

instructions run when the program using that algorithm is 

executed is always some constant times f(n).) If this is the case, 

we can then claim that the algorithm runs in (f(n)) time. 

 

 

Thus, we can think of each of these "operators" as comparing 

functions much like we compare real numbered values. Using 

this analogy, here is how each operator works: 

 

O is like . 

 is like . 

 is like =. 

 

Finally, another way to think about each of these is that they 

describe a class of functions.  

 

If I say f(n) = O(n), it's just like saying f(n)  O(n). This means 

that f(n) can be any one of a number of functions. In 

particular, f(n) can be any function that proportionate to n OR 

smaller. 



Here is an example of analyzing the running time of an 

algorithm: 

 

Consider a binary search on a sorted array A of size n for a 

value val: 

 
public static boolean search(int[] A, int 

val) { 

 

    low = 0; 

    high = A.length-1; 

    while (low <= high) { 

 mid = (low+high)/2; 

 if (val == A[mid]) 

  return true; 

 else if (val > A[mid]) 

  low = mid+1; 

 else 

  high = mid - 1; 

    } 

    return false; 

} 

 

Remember, we are only considered with the number of simple 

steps that are executed here within a constant factor. 

 

 

 

In general, each loop iteration only contains at most 5 simple 

statements or comparisons. We can treat this as a constant. 

Thus, the real question is, how many times does the while loop 

that contains these 5 statements run? 

 

You'll notice that the difference between high and low 

decreases by at least a factor of 2 for each iteration. 



Essentially, we first are searching amongst n terms, and in the 

next iteration n/2 terms, then n/4 terms, then n/8 terms, etc. 

 

In essence on the kth iteration, we are searching amongst n/2k 

terms. Thus, we want to find the value of k for which n/2k = 1.  

 

n/2k = 1 

n = 2k 

k = log 2 n, using the definition of log. 

 

Question: Can you prove the algorithm will always stop? Why 

will it? 

 

Since there are a constant number of statements in a loop that 

runs at most log 2 n times, we can confidently say that this 

algorithm runs in O(log 2 n) time. The reason that I used O 

instead of  is that it is possible that the algorithm could end 

on the first iteration, which would mean in that instance the 

algorithm would run in (1) time and not (log 2 n). This 

means that the best case running time is (1). In essence, we 

bounded the worst case running time, but it's possible that the 

best case running time is far better. Thus, we just use a O 

bound instead of a  bound. However, it IS true that the 

average case running time of a binary search is (log 2 n), 

though this is more difficult to prove. 

 

These methods can in general be used to determine the 

theoretical run-time of an algorithm. But, occasionally, an 

algorithm will prove too difficult to analyze theoretically. In 

these cases, we can experimentally gauge the run-time of an 

algorithm. (Furthermore, sometimes it is good to verify that an 

algorithm is actually running as fast as you expect it to do so. 

Thus, it makes sense to verify theoretical run-times with 

experiments.) 



Verifying Algorithmic Analysis through running actual code 
 

T(N) is the empirical (observed) running time of the code and 

the claim is made that T(N)  O(F(N)). 

 

Technique is to compute a series of values T(N)/F(N) for a 

range of N (commonly spaced out by a factors of two).  

Depending upon these values of T(N)/F(N) we can determine 

how accurate our estimation for F(N) is according to: 

 

  is a close answer() if the values converge to a + 

const.  

 

F(N) =         is an overestimate if the values converge to zero. 

 

                    is an underestimate if the values diverge . 
 

Examples 
 

   Example 1 

Consider the following table of data obtained from 

running an instance of an algorithm assumed to be cubic.  

Decide if the Big-Theta estimate, Θ(N3) is accurate.   
 

Run N T(N) F(N) = N3 T(N)/F(N) 

1 100 0.017058 ms 106 
1.0758  10-8 

2 1000 17.058 ms 109 1.0758 10-8 

3 5000 2132.2464 ms 1.25x1011 
1.0757  10-8 

4 10000 17057.971 ms 1012 1.0757  10-8 

5 50000 2132246.375 ms 1.25x1014 1.0757  10-8 
 

The calculated values converge to a positive constant 

(1.0757  10-8) – so the estimate of Θ (n3) is an accurate 

estimate. (In practice, this algorithm runs in (n3) time.) 



Example 2 

 

Consider the following table of data obtained from 

running an instance of an algorithm assumed to be 

quadratic.  Decide if the Big-Theta estimate, Θ (N2) is 

accurate.  

 

Run N T(N) F(N) = N2 T(N)/F(N) 

1 100 0.00012 ms 104 
1.6  10-8 

2 1000 0.03389 ms 106 3.389  10-8 

3 10000 10.6478 ms 108 1.064  10-7 

4 100000 2970.0177 ms 1010 2.970  10-7 

5 1000000 938521.971 ms 1012 9.385  10-7 
 

 

The values diverge, so the code runs in Ω(N2), and has a larger 

theta bound. 
 

 

Limitations of Big-Oh Notation  

 

1) not useful for small sizes of input sets 

2) omission of the constants can be misleading – example 

2NlogN and 1000N, even though its growth rate is larger the 

first function is probably better.  Constants also reflect things 

like memory access and disk access. 

3) assumes an infinite amount of memory – not trivial when 

using large data sets 

4) accurate analysis relies on clever observations to optimize 

the algorithm. 
 

 

 



Growth Rates of Various Functions 

 

The table below illustrates how various functions grow with 

the size of the input n. 

 

Assume that the functions shown in this table are to be 

executed on a machine which will execute a million instructions 

per second.  A linear function which consists of one million 

instructions will require one second to execute.  This same 

linear function will require only 410-5 seconds (40 

microseconds) if the number of instructions (a function of 

input size) is 40.   Now consider an exponential function.   
 

log 

n 
n 

n n log n n2 n3 2n 

0 1 1 0 1 1 2 

1 1.4 2 2 4 8 4 

2 2 4 8 16 64 16 

3 2.8 8 24 64 512 256 

4 4 16 64 256 4096 65,536 

5 5.7 32 160 1024 32,768 4.294109 

5.

3 

6.3 
40 212 1600 64000 1.0991012 

6 8 64 384 4096 262,144 1.8441019 

~10 31.6 1000 9966 106 109 NaN =) 

 

The Growth Rate of Functions (in terms of steps in the 

algorithm) 
 

 

 

 



When the input size is 32 approximately 4.3109 steps will be 

required (since 232 = 4.29109).  Given our system performance 

this algorithm will require a running time of approximately 

71.58 minutes.  Now consider the effect of increasing the input 

size to 40, which will require approximately 1.1x1012 steps 

(since 240 = 1.09x1012).  Given our conditions this function will 

require about 18325 minutes (12.7 days) to compute.  If n is 

increased to 50 the time required will increase to about 35.7 

years.  If n increases to 60 the time increases to 36558 years 

and if n increases to 100 a total of 4x1016 years will be needed! 
 

Suppose that an algorithm takes T(N) time to run for a 

problem of size N – the question becomes – how long will it 

take to solve a larger problem?   As an example, assume that 

the algorithm is an O(N3 ) algorithm.  This implies: 

 

T(N) = cN3.   

 

If we increase the size of the problem by a factor of 10 we have: 

T(10N) = c(10N)3.  This gives us: 

T(10N) = 1000cN3 = 1000T(N) (since T(N) = cN3) 
 

Therefore, the running time of a cubic algorithm will increase 

by a factor of 1000 if the size of the problem is increased by a 

factor of 10.  Similarly, increasing the problem size by another 

factor of 10 (increasing N to 100) will result in another 1000 

fold increase in the running time of the algorithm (from 1000 

to 1106). 

 

T(100N) = c(100N)3 = 1106cN3 = 1106T(N) 

 

A similar argument will hold for quadratic and linear 

algorithms, but a slightly different approach is required for 

logarithmic algorithms.  These are shown below. 
 



For a quadratic algorithm, we have T(N) = cN2.  This implies: 

T(10N) = c(10N)2.  Expanding produces the form: T(10N) = 

100cN2 = 100T(N).  Therefore, when the input size increases by 

a factor of 10 the running time of the quadratic algorithm will 

increase by a factor of 100. 

 

For a linear algorithm, we have T(N) = cN.  This implies: 

T(10N) = c(10N).  Expanding produces the form: T(10N) = 

10cN = 10T(N).  Therefore, when the input size increases by a 

factor of 10 the running time of the linear algorithm will 

increase by the same factor of 10. 

 

In general, an f-fold increase in input size will yield an f 3-fold 

increase in the running time of a cubic algorithm, an f 2-fold 

increase in the running time of a quadratic algorithm, and an 

f-fold increase in the running time of a linear algorithm. 

 

The analysis for the linear, quadratic, cubic (and in general 

polynomial) algorithms does not work when in the presence of 

logarithmic terms.  When an O(N logN) algorithm experiences 

a 10-fold increase in input size, the running time increases by a 

factor which is only slightly larger than 10.  For example, 

increasing the input by a factor of 10 for an O(N logN) 

algorithm produces: T(10N) = c(10N) log(10N).  Expanding 

this yields: T(10N) = 10cN log(10N) = 10cN log10 + 10cN logN 

= 10T(N) + cN  (where c = 10clog10).  As N gets very large, 

the ratio T(10N)/T(N) gets closer to 10 (since cN/T(N)  (10 

log10)/logN gets smaller and smaller as N increases. 

 

The above analysis implies, for a logarithmic algorithm, if the 

algorithm is competitive with a linear algorithm for a 

sufficiently large value of N, it will remain so for slightly larger 

N. 


