
Order Notation - Big Oh

Since we want to simply count the number of simple statements

and algorithm runs in terms of Big-Oh notation, we need to

learn the formal definition of Big-Oh, Big-Omega, and Big-

Theta, so that we properly use these technical terms.

Definition of O(g(n)) :

f(n) = O(g(n)) iff for all n  n0 (n0 is a constant.)

f(n)  cg(n) for some constant c.

(Note: iff means "if and only if")

Here is an example:

Let f(n) = 2n+1 and g(n) = n. In this situation f(n) = O(g(n)).

Here is how to prove it:

Let c=3, and n0=2. then f(n) = 2n+1 and cg(n) = 3n.

Thus, we need to show that (2n+1)  3n for all n  2.

2n+1  2n + n, since n > 1.

 = 3n.

Thus, if we say some algorithm takes O(n) time to execute (in

the worst case), we are really saying that no matter what input

of size n the algorithm receives, it will always complete in cn

steps, where c is some constant. We will usually use big-Oh

notation when we are describing a worst-case running time.

In general, a simple rule dealing with simple polynomial

functions is the following:

If f(n) is a polynomial of degree k, then f(n) = O(nk).

Question : Is 2n+1 = O(n10)? Answer yes, try c=1, n0=2.

Big-Oh(O) is an upper bound. It simply guarantees that a

function is no larger than a constant times a function g(n), for

O(g(n)).

Here is a definition using a limit :

f(n) = O(g(n))

iff lim as n f(n)/g(n) = c, where c is a constant.

Order Notation - Big Omega

The opposite of big Oh, in some sense, is big Omega.

Definition of :

f(n) = (g(n)) iff for all n  n0 (n0 is a constant.)

f(n)  cg(n) for some constant c. (Notice that the ONLY

 difference here is the

 inequality sign.)

Here is a quick example:

Let f(n) = n2 - 3

g(n) = 10n.

In this situation, we have f(n) = (g(n)). We can prove this as

follows:

Let c = .1 and n0=3.

Then we have

f(n) = n2 - 3, cg(n) = n.

Thus, we need to show that

n2 - 3  n for all n  3.

n2 - 3  n2 - n, since n  3.

 = n(n-1)

  n(2), since n3, n-12.

  n.

Here is the limit definition of :

f(n) =  (g(n))

iff lim as n f(n)/g(n) > 0.

In essence,  establishes a lower bound for a function. f(n) has

to grow at least as fast as g(n) to within a constant factor. With

respect to an algorithm, when we say that an algorithm runs in

(n) for example, this means that whenever you run an

algorithm with an input of size n, the number of small

instructions executed is AT LEAST cn, where c is some

positive constant.

Order Notation - Big Theta

Definition of :

f(n) = (g(n)) iff f(n) = O(g(n)) and f(n) = (g(n)).

This simply means that g(n) is both an upper AND lower

bound of f(n) within a constant factor. In essence, as n grows

large, f(n) and g(n) are within a constant of each other.

Here's the limit definition:

f(n) =  (g(n))

iff lim as n f(n)/g(n) = c, where c is a constant and c > 0.

Thus, if we can show that the an algorithm runs in O(f(n)) time

for any input of size n, and also show that an algorithm runs in

(f(n)) time for any input of size n, we can conclude that both

the WORST case running time and BEST case running time

are proportional to f(n), (meaning that the number of small

instructions run when the program using that algorithm is

executed is always some constant times f(n).) If this is the case,

we can then claim that the algorithm runs in (f(n)) time.

Thus, we can think of each of these "operators" as comparing

functions much like we compare real numbered values. Using

this analogy, here is how each operator works:

O is like .

 is like .

 is like =.

Finally, another way to think about each of these is that they

describe a class of functions.

If I say f(n) = O(n), it's just like saying f(n)  O(n). This means

that f(n) can be any one of a number of functions. In

particular, f(n) can be any function that proportionate to n OR

smaller.

Here is an example of analyzing the running time of an

algorithm:

Consider a binary search on a sorted array A of size n for a

value val:

public static boolean search(int[] A, int

val) {

 low = 0;

 high = A.length-1;

 while (low <= high) {

 mid = (low+high)/2;

 if (val == A[mid])

 return true;

 else if (val > A[mid])

 low = mid+1;

 else

 high = mid - 1;

 }

 return false;

}

Remember, we are only considered with the number of simple

steps that are executed here within a constant factor.

In general, each loop iteration only contains at most 5 simple

statements or comparisons. We can treat this as a constant.

Thus, the real question is, how many times does the while loop

that contains these 5 statements run?

You'll notice that the difference between high and low

decreases by at least a factor of 2 for each iteration.

Essentially, we first are searching amongst n terms, and in the

next iteration n/2 terms, then n/4 terms, then n/8 terms, etc.

In essence on the kth iteration, we are searching amongst n/2k

terms. Thus, we want to find the value of k for which n/2k = 1.

n/2k = 1

n = 2k

k = log 2 n, using the definition of log.

Question: Can you prove the algorithm will always stop? Why

will it?

Since there are a constant number of statements in a loop that

runs at most log 2 n times, we can confidently say that this

algorithm runs in O(log 2 n) time. The reason that I used O

instead of  is that it is possible that the algorithm could end

on the first iteration, which would mean in that instance the

algorithm would run in (1) time and not (log 2 n). This

means that the best case running time is (1). In essence, we

bounded the worst case running time, but it's possible that the

best case running time is far better. Thus, we just use a O

bound instead of a  bound. However, it IS true that the

average case running time of a binary search is (log 2 n),

though this is more difficult to prove.

These methods can in general be used to determine the

theoretical run-time of an algorithm. But, occasionally, an

algorithm will prove too difficult to analyze theoretically. In

these cases, we can experimentally gauge the run-time of an

algorithm. (Furthermore, sometimes it is good to verify that an

algorithm is actually running as fast as you expect it to do so.

Thus, it makes sense to verify theoretical run-times with

experiments.)

Verifying Algorithmic Analysis through running actual code

T(N) is the empirical (observed) running time of the code and

the claim is made that T(N)  O(F(N)).

Technique is to compute a series of values T(N)/F(N) for a

range of N (commonly spaced out by a factors of two).

Depending upon these values of T(N)/F(N) we can determine

how accurate our estimation for F(N) is according to:

 is a close answer() if the values converge to a +

const.

F(N) = is an overestimate if the values converge to zero.

 is an underestimate if the values diverge .

Examples

 Example 1

Consider the following table of data obtained from

running an instance of an algorithm assumed to be cubic.

Decide if the Big-Theta estimate, Θ(N3) is accurate.

Run N T(N) F(N) = N3 T(N)/F(N)

1 100 0.017058 ms 106
1.0758  10-8

2 1000 17.058 ms 109 1.0758 10-8

3 5000 2132.2464 ms 1.25x1011
1.0757  10-8

4 10000 17057.971 ms 1012 1.0757  10-8

5 50000 2132246.375 ms 1.25x1014 1.0757  10-8

The calculated values converge to a positive constant

(1.0757  10-8) – so the estimate of Θ (n3) is an accurate

estimate. (In practice, this algorithm runs in (n3) time.)

Example 2

Consider the following table of data obtained from

running an instance of an algorithm assumed to be

quadratic. Decide if the Big-Theta estimate, Θ (N2) is

accurate.

Run N T(N) F(N) = N2 T(N)/F(N)

1 100 0.00012 ms 104
1.6  10-8

2 1000 0.03389 ms 106 3.389  10-8

3 10000 10.6478 ms 108 1.064  10-7

4 100000 2970.0177 ms 1010 2.970  10-7

5 1000000 938521.971 ms 1012 9.385  10-7

The values diverge, so the code runs in Ω(N2), and has a larger

theta bound.

Limitations of Big-Oh Notation

1) not useful for small sizes of input sets

2) omission of the constants can be misleading – example

2NlogN and 1000N, even though its growth rate is larger the

first function is probably better. Constants also reflect things

like memory access and disk access.

3) assumes an infinite amount of memory – not trivial when

using large data sets

4) accurate analysis relies on clever observations to optimize

the algorithm.

Growth Rates of Various Functions

The table below illustrates how various functions grow with

the size of the input n.

Assume that the functions shown in this table are to be

executed on a machine which will execute a million instructions

per second. A linear function which consists of one million

instructions will require one second to execute. This same

linear function will require only 410-5 seconds (40

microseconds) if the number of instructions (a function of

input size) is 40. Now consider an exponential function.

log

n
n

n n log n n2 n3 2n

0 1 1 0 1 1 2

1 1.4 2 2 4 8 4

2 2 4 8 16 64 16

3 2.8 8 24 64 512 256

4 4 16 64 256 4096 65,536

5 5.7 32 160 1024 32,768 4.294109

5.

3

6.3
40 212 1600 64000 1.0991012

6 8 64 384 4096 262,144 1.8441019

~10 31.6 1000 9966 106 109 NaN =)

The Growth Rate of Functions (in terms of steps in the

algorithm)

When the input size is 32 approximately 4.3109 steps will be

required (since 232 = 4.29109). Given our system performance

this algorithm will require a running time of approximately

71.58 minutes. Now consider the effect of increasing the input

size to 40, which will require approximately 1.1x1012 steps

(since 240 = 1.09x1012). Given our conditions this function will

require about 18325 minutes (12.7 days) to compute. If n is

increased to 50 the time required will increase to about 35.7

years. If n increases to 60 the time increases to 36558 years

and if n increases to 100 a total of 4x1016 years will be needed!

Suppose that an algorithm takes T(N) time to run for a

problem of size N – the question becomes – how long will it

take to solve a larger problem? As an example, assume that

the algorithm is an O(N3) algorithm. This implies:

T(N) = cN3.

If we increase the size of the problem by a factor of 10 we have:

T(10N) = c(10N)3. This gives us:

T(10N) = 1000cN3 = 1000T(N) (since T(N) = cN3)

Therefore, the running time of a cubic algorithm will increase

by a factor of 1000 if the size of the problem is increased by a

factor of 10. Similarly, increasing the problem size by another

factor of 10 (increasing N to 100) will result in another 1000

fold increase in the running time of the algorithm (from 1000

to 1106).

T(100N) = c(100N)3 = 1106cN3 = 1106T(N)

A similar argument will hold for quadratic and linear

algorithms, but a slightly different approach is required for

logarithmic algorithms. These are shown below.

For a quadratic algorithm, we have T(N) = cN2. This implies:

T(10N) = c(10N)2. Expanding produces the form: T(10N) =

100cN2 = 100T(N). Therefore, when the input size increases by

a factor of 10 the running time of the quadratic algorithm will

increase by a factor of 100.

For a linear algorithm, we have T(N) = cN. This implies:

T(10N) = c(10N). Expanding produces the form: T(10N) =

10cN = 10T(N). Therefore, when the input size increases by a

factor of 10 the running time of the linear algorithm will

increase by the same factor of 10.

In general, an f-fold increase in input size will yield an f 3-fold

increase in the running time of a cubic algorithm, an f 2-fold

increase in the running time of a quadratic algorithm, and an

f-fold increase in the running time of a linear algorithm.

The analysis for the linear, quadratic, cubic (and in general

polynomial) algorithms does not work when in the presence of

logarithmic terms. When an O(N logN) algorithm experiences

a 10-fold increase in input size, the running time increases by a

factor which is only slightly larger than 10. For example,

increasing the input by a factor of 10 for an O(N logN)

algorithm produces: T(10N) = c(10N) log(10N). Expanding

this yields: T(10N) = 10cN log(10N) = 10cN log10 + 10cN logN

= 10T(N) + cN (where c = 10clog10). As N gets very large,

the ratio T(10N)/T(N) gets closer to 10 (since cN/T(N)  (10

log10)/logN gets smaller and smaller as N increases.

The above analysis implies, for a logarithmic algorithm, if the

algorithm is competitive with a linear algorithm for a

sufficiently large value of N, it will remain so for slightly larger

N.

